1000 resultados para AV3V region


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ATTMA "Aerosol Transport in the Trans-Manche Atmosphere" project investigates the transportation and dispersion of air pollutants across the English Channel, in collaboration with local authorities and other Universities in Southern England and Northern France. The research is concerned with both forward and inverse (receptor based) tracking. Two alternative dispersion simulation methods are used: (a) Lagrangian Particle Dispersion (LPD) models, (b) Eulerian Finite Volume type models. This paper is concerned with part (a), the simulations based on LPD models. Two widely applied LPD models are used and compared. Since in many observed episodes the source of pollution is traced outside the region of interest, long range, trans-continental transport is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is concern in the Cross-Channel region of Nord-Pas-de-Calais (France) and Kent (Great Britain), regarding the extent of atmospheric pollution detected in the area from emitted gaseous (VOC, NOx, S02)and particulate substances. In particular, the air quality of the Cross-Channel or "Trans-Manche" region is highly affected by the heavily industrial area of Dunkerque, in addition to transportation sources linked to cross-channel traffic in Kent and Calais, posing threats to the environment and human health. In the framework of the cross-border EU Interreg IIIA activity, the joint Anglo-French project, ATTMA, has been commissioned to study Aerosol Transport in the Trans-Manche Atmosphere. Using ground monitoring data from UK and French networks and with the assistance of satellite images the project aims to determine dispersion patterns. and identify sources responsible for the pollutants. The findings of this study will increase awareness and have a bearing on future air quality policy in the region. Public interest is evident by the presence of local authorities on both sides of the English Channel as collaborators. The research is based on pollution transport simulations using (a) Lagrangian Particle Dispersion (LPD) models, (b) an Eulerian Receptor Based model. This paper is concerned with part (a), the LPD Models. Lagrangian Particle Dispersion (LPD) models are often used to numerically simulate the dispersion of a passive tracer in the planetary boundary layer by calculating the Lagrangian trajectories of thousands of notional particles. In this contribution, the project investigated the use of two widely used particle dispersion models: the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the model FLEXPART. In both models forward tracking and inverse (or·. receptor-based) modes are possible. Certain distinct pollution episodes have been selected from the monitor database EXPER/PF and from UK monitoring stations, and their likely trajectory predicted using prevailing weather data. Global meteorological datasets were downloaded from the ECMWF MARS archive. Part of the difficulty in identifying pollution sources arises from the fact that much of the pollution outside the monitoring area. For example heightened particulate concentrations are to originate from sand storms in the Sahara, or volcanic activity in Iceland or the Caribbean work identifies such long range influences. The output of the simulations shows that there are notable differences between the formulations of and Hysplit, although both models used the same meteorological data and source input, suggesting that the identification of the primary emissions during air pollution episodes may be rather uncertain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The position and structure of the North Atlantic Subtropical Front is studied using Lagrangian flow tracks and remote sensing (AVHRR imagery: TOPEX/POSEIDON altimetry: SeaWiFS) in a broad region ( similar to 31 degree to similar to 36 degree N) of marked gradient of dynamic height (Azores Current) that extends from the Mid-Atlantic Ridge (MAR), near similar to 40 degree W, to the Eastern Boundary ( similar to 10 degree W). Drogued Argos buoy and ALACE tracks are superposed on infrared satellite images in the Subtropical Front region. Cold (cyclonic) structures, called storms, and warm (anticyclonic) structures of 100-300 km in size can be found on the south side of the Subtropical Front outcrop, which has a temperature contrast of about 1 degree C that can be followed for similar to 2500 km near 35 degree N. Warmer water adjacent to the outcrop is flowing eastward (Azores Current) but some warm water is returned westward about 300 km to the south (southern Counterflow). Estimates of horizontal diffusion in a Storm (D=2.2t10 super(2) m super(2) s super(-1)) and in the Subtropical Front region near 200 m depth (D sub(x)=1.3t10 super(4) m super(2) s super(-1), D sub(y)=2.6t10 super(3) m super(2) s super(-1)) are made from the Lagrangian tracks. Altimeter and in situ measurements show that Storms track westwards. Storms are separated by about 510 km and move westward at 2.7 km d super(-1). Remote sensing reveals that some initial structures start evolving as far east as 23 degree W but are more organized near 29 degree W and therefore Storms are about 1 year old when they reach the MAR (having travelled a distance of 1000 km). Structure and seasonality in SeaWiFS data in the region is examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview of the main oceanographic features of the eastern North Atlantic boundary, with emphasis toward the upper layers, is presented. The principal features discussed are: water mass boundaries; forcing by wind, density and tides; topographic features and effects; fronts; upwelling and downwelling; poleward flows; coastal currents; eddies. The occurrence and spatial and seasonal variability of these features is described in five regional sections: Celtic Sea and western English Channel; Bay of Biscay; western Iberia; Gulf of Cadiz; northwest Africa. This paper is intended to provide a base of physical oceanographic knowledge in support of research in fisheries, biological and chemical oceanography, and marine biology.