935 resultados para AUTOIMMUNE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only limited data are available about the precise mechanism leading to tissue inflammation and damage in patients with hidradenits suppurativa (HS). The central pathogenetic event in HS is the occlusion of the upper parts of the hair follicle leading to a perifollicular lympho-histiocytic inflammation. In early lesions, neutrophilic abscess formation and influx of mainly macrophages, monocytes and dendritic cells predominate. In chronic disease, the infiltrate expand with increased frequencies of B cells and plasma cells. In the inflammatory infiltrates toll like receptor 2 (TLR2) was highly expressed by infiltrating macrophages and dendritic cells indicating that stimulation of inflammatory cells by TLR2 activating microbial products may be important trigger factors in the chronic inflammatory process. Furthermore, the pro inflammatory cytokines IL-12 and IL-23 are abundantly expressed by macrophages infiltrating papillary and reticular dermis of HS skin. Both of these cytokines are believed to be important mediators in autoimmune tissue destruction and its blocking by biologics has been shown to be effective in the treatment of psoriasis. Especially IL-23 has been shown to be involved in the induction of a T helper cell subset producing IL-17, therefore, named Th17, which is distinct from the classical Th1/Th2 subsets. In chronic HS lesions IL-17-producing T helper cells were found to infiltrate the dermis. An overexpression of various other cytokines like IL-1beta, CYCL9 (MIG), IL-10 , IL-11 and BLC has been described in HS lesion whereas IL-20 and IL-22 have been shown to be down regulated. Similar to psoriasis also in HS the antimicrobial peptides beta defensin 2 and psoriasin are highly upregulated. This may at least in part explain the clinical finding that HS patients suffer only rarely from skin infections. Taken together the inflammatory reaction leading to HS are only poorly understood, but they show many similarity with other inflammatory reactions as e.g. in psoriasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1 diabetes is caused by autoimmune-mediated β cell destruction leading to insulin deficiency. The histone deacetylase SIRT1 plays an essential role in modulating several age-related diseases. Here we describe a family carrying a mutation in the SIRT1 gene, in which all five affected members developed an autoimmune disorder: four developed type 1 diabetes, and one developed ulcerative colitis. Initially, a 26-year-old man was diagnosed with the typical features of type 1 diabetes, including lean body mass, autoantibodies, T cell reactivity to β cell antigens, and a rapid dependence on insulin. Direct and exome sequencing identified the presence of a T-to-C exchange in exon 1 of SIRT1, corresponding to a leucine-to-proline mutation at residue 107. Expression of SIRT1-L107P in insulin-producing cells resulted in overproduction of nitric oxide, cytokines, and chemokines. These observations identify a role for SIRT1 in human autoimmunity and unveil a monogenic form of type 1 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute central nervous system (CNS) injuries such as spinal cord injury, traumatic brain injury, autoimmune encephalomyelitis, and ischemic stroke are associated with significant morbidity, mortality, and health care costs worldwide. Preliminary research has shown potential neuroprotection associated with adult tissue derived stem/progenitor cell based therapies. While initial research indicated that engraftment and transdifferentiation into neural cells could explain the observed benefit, the exact mechanism remains controversial. A second hypothesis details localized stem/progenitor cell engraftment with alteration of the loco-regional milieu; however, the limited rate of cell engraftment makes this theory less likely. There is a growing amount of preclinical data supporting the idea that, after intravenous injection, stem/progenitor cells interact with immunologic cells located in organ systems distant to the CNS, thereby altering the systemic immunologic/inflammatory response. Such distant cell "bioreactors" could modulate the observed post-injury pro-inflammatory environment and lead to neuroprotection. In this review, we discuss the current literature detailing the above mechanisms of action for adult stem/progenitor cell based therapies in the CNS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Because studies suggest that ultraviolet (UV) radiation modulates the myositis phenotype and Mi-2 autoantigen expression, we conducted a retrospective investigation to determine whether UV radiation may influence the relative prevalence of dermatomyositis and anti-Mi-2 autoantibodies in the US. METHODS: We assessed the relationship between surface UV radiation intensity in the state of residence at the time of onset with the relative prevalence of dermatomyositis and myositis autoantibodies in 380 patients with myositis from referral centers in the US. Myositis autoantibodies were detected by validated immunoprecipitation assays. Surface UV radiation intensity was estimated from UV Index data collected by the US National Weather Service. RESULTS: UV radiation intensity was associated with the relative proportion of patients with dermatomyositis (odds ratio [OR] 2.3, 95% confidence interval [95% CI] 0.9-5.8) and with the proportion of patients expressing anti-Mi-2 autoantibodies (OR 6.0, 95% CI 1.1-34.1). Modeling of these data showed that these associations were confined to women (OR 3.8, 95% CI 1.3-11.0 and OR 17.3, 95% CI 1.8-162.4, respectively) and suggests that sex influences the effects of UV radiation on autoimmune disorders. Significant associations were not observed in men, nor were UV radiation levels related to the presence of antisynthetase or anti-signal recognition particle autoantibodies. CONCLUSION: This first study of the distribution of myositis phenotypes and UV radiation exposure in the US showed that UV radiation may modulate the clinical and immunologic expression of autoimmune disease in women. Further investigation of the mechanisms by which these effects are produced may provide insights into pathogenesis and suggest therapeutic or preventative strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis, a form of programmed cell death, is critical to homoeostasis, normal development, and physiology. Dysregulation of apoptosis can lead to the accumulation of unwanted cells, such as occurs in cancer, and the removal of needed cells or disorders of normal tissues, such as heart, neurodegenerative, and autoimmune diseases. Noninvasive detection of apoptosis may play an important role in the evaluation of disease states and response to therapeutic intervention for a variety of diseases. It is desirable to have an imaging method to accurately detect and monitor this process in patients. In this study, we developed annexin A5-conjugated polymeric micellar nanoparticles dual-labeled with a near-infrared fluorescence fluorophores (Cy7) and a radioisotope (111In), named as 111In-labeled annexin A5-CCPM. In vitro studies demonstrated that annexin A5-CCPM could strongly and specifically bind to apoptotic cells. In vivo studies showed that apoptotic tissues could be clearly visualized by both single photon emission computed tomography (SPECT) and fluorescence molecular tomography (FMT) after intravenous injection of 111In-labeled Annexin A5-CCPM in 6 different apoptosis models. In contrast, there was little signal in respective healthy tissues. All the biodistribution data confirmed imaging results. Moreover, histological analysis revealed that radioactivity count correlated with fluorescence signal from the nanoparticles, and both signals co-localized with the region of apoptosis. In sum, 111In-labeled annexin A5-CCPM allowed visualization of apoptosis by both nuclear and optical imaging techniques. The complementary information acquired with multiple imaging techniques should be advantageous in improving diagnostics and management of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fourth component of human complement (C4) exists in blood as two major forms or isotypes which differ in their biochemical and functional properties. Because C4A preferentially transacylates onto amino groups, it has been postulated that this isotype is more important in the clearance of immune complexes. Patients having systemic lupus erythematosus (SLE), an autoimmune disease, have an increased incidence of C4A null genes and presumably decreased levels of C4A. Currently accepted methods for the detection of C4, however, cannot accurately quantitate C4A and C4B. Thus, their role in disease susceptibility and activity has not been studied. A novel immunoassay, which utilized heat-aggregated IgG to activate and capture C4, was developed for accurate quantitation of total C4, C4A and C4B by monoclonal antibody conjugates. Higher mean total C4 values were found in a healthy Black control population when compared to White controls. This appeared to be due to an increase in C4B. In SLE patients, mean total C4 levels were significantly lower than controls regardless of disease activity. Serial patient studies showed that the ratio of C4A:C4B remained relatively constant. When the patient group was compared to controls based on C4 null gene status, the mean levels of C4A were identical while C4B was decreased in the patients. This suggests that the common HLA-B8, Dr3 C4A*Q0 gene deletion found in SLE patients may also adversely affect genetic control of the C4B genes. Furthermore, low levels of C4A cannot fully account for disease development in SLE patients having C4A null genes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing support for the theory that an interaction between the immune and reproductive/endocrine systems underlies the pathogenesis of autoimmune rheumatic diseases. Most of the recent evidence derives from studies of sex hormones and pregnancy in women with systemic lupus. Other than an ameliorative effect of pregnancy, little is known about reproductive factors in relation to rheumatoid arthritis. To elucidate the relationship, a population-based retrospective study was undertaken. Included were 378 female residents of Olmsted County, Minnesota diagnosed with rheumatoid arthritis between 1950 and 1982 (cases) and 325 arthritis-free, married female controls matched to the 324 married cases on birth-year, age at first marriage, and duration of Olmsted County residency. Information of reproductive factors was extracted from the medical records system maintained by the Mayo Clinic.^ Cases had lower fertility rates compared with the female population of Minnesota (rate ratio = 0.86, 95% confidence interval (CI)= 0.80-0.92). Fertility was significantly reduced even prior to the onset of rheumatoid factor positive arthritis. Restricting the comparison to married Olmsted County residents did not alter the results. Further adjustments for time not at risk of conception using survival analysis and proportional hazards modeling only intensified the fertility reduction in the married cases compared with controls. Nulligravidity was more common among cases than controls (odds ratio = 3.16, CI = 1.61-6.20). Independent of fertility, pregnancy had a protective effect against rheumatoid arthritis (odds ratio = 0.31, CI = 0.11-0.89), which was dramatically reversed in the 12 months postpartum (odds ratio = 4.67, CI = 1.50-14.47). Cases were younger at menopause than controls (p $<$ 0.01).^ Small but statistically insignificant associations were observed between rheumatoid arthritis and the following factors: increased frequency of complaints to a physician of infertility; increased frequency of spontaneous abortion, premature birth, and congenital malformations following arthritis onset; and increased prevalence of menopause at arthritis onset. Cases did not differ from controls on age at menarche, duration of pregnancy, or birth weight.^ The findings provide further support for the involvement of the reproductive/endocrine systems in the pathogenesis of autoimmune rheumatic disease. The search for biological mechanisms should be intensified. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor necrosis factor receptor p75/80 ((TNF-R p75/80) is a 75 kDa type 1 transmembrane protein expressed predominately on cells of hematopoietic lineage. TNF-R p75/80 belongs to the TNF receptor superfamily characterized by cysteine-rich extracellular regions composed of three to six disulfide-linked domains. In the present report, we have characterized, for the first time, the complete gene structure for human TNF-R p75/80 which spans approximately 43 kbp. The gene consists of 10 exons (ranging from 34 bp to 2.5 kbp) and 9 introns (343 bp to 19 kbp). Consensus elements for transcription factors involved in T cell development and activation were noted in the 5$\sp\prime$ flanking region including TCF-1, Ikaros, AP-1, CK-2, IL-6RE, ISRE, GAS, NF-$\kappa$B and SP1, as well as an unusually high GC content and CpG frequency that appears characteristic of some TNF-R family members. The unusual (GATA)$\sb{\rm n}$ and (GAA)(GGA) repeats found within intron 1 may prove useful for further genome analysis within the 1p36 chromosomal locus. The human TNF-R p75/80 gene structure will permit further assessment of its involvement in normal hematopoietic cell development and function, autoimmune disease, and non-random translocations in hematopoietic malignancies. The region 1.8 kb 5$\sp\prime$ of the ATG was able to drive luciferase expression when transfected into cell lines expressing TNF-R p75/80. Further characterization of the 5$\sp\prime$-regulatory region will aid in determining factors and signal transduction pathways involved in regulating TNF-R p75/80 expression. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coordination of the apoptotic program necessitates the timely expression of sensor, effector, and mediator molecules. Fas/CD95, a transmembrane receptor which tethers the cell-death machinery, triggers apoptosis to maintain immune homeostasis, tolerance, and surveillance. Dysregulation in Fas-mediated apoptosis, either from disproportionate expression or disruptions in the downstream signaling pathway, manifests in autoimmune disorders and certain malignant progression. ^ In this project, the transcriptional requirements underlying two modulators of Fas expression were investigated. In T-lymphocytes, activation results in potent Fas upregulation followed by an acquisition of sensitivity towards FasL-mediated apoptosis. Human fas promoter cloning and analysis have identified a cis-element critical for inducible Fas expression. EMSA studies using this region demonstrated a constitutive association with the transcription factor Sp1 and inducible NF-κB binding in response to activation. These interactions were mutually exclusive, as the rB/Sp1 element bound with recombinant Sp1 was readily displaced by increasing amounts of NF-κB p50. Thus, Fas upregulation by T-cell activation stimuli is dependent upon NF-κB binding at the fas promoter. ^ The capacity of Sp1 to direct basal Fas expression was examined through mutagenesis of several GC-rich regions within the core fas promoter. Reporter analysis of single or combinatorial mutant GC-box constructs revealed usage of a particular GC-element in moderating over 50% of basal fas transcription. Inducible expression was Sp1-independent, however, since activated Jurkat cells containing fas Sp1-mutant constructs retained equivalent reporter induction. Overall, a dual-level of transcriptional control exists in fas, where constitutive activity is monitored through Sp1 binding, whereas T-cell activation obligates NF κB transactivation. ^ In response to genotoxic damage, p53 modulates Fas levels partly by a transcription-dependent mechanism. Reconstitution of wild-type p53 in the hepatoma cell line Hep3B readily induced Fas transcription. Furthermore, fas promoter analysis identified an undescribed p53 responsive element which, when deleted, ablated p53-mediated reporter activity. Therefore, the pro-apoptotic function mediated by p53 is driven partially through the enhancement of Fas expression. ^ Altogether, events elicting Fas transcription may invoke single or overlapping mechanisms that converge at the level of promoter activity. Agents that enhance or attenuate these pathways may be therapeutically beneficial in modulating the expression and sensitivity towards Fas-dependent apoptosis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D. Transfer of gut microbiota from adult males to immature females altered the recipient's microbiota, resulting in elevated testosterone and metabolomic changes, reduced islet inflammation and autoantibody production, and robust T1D protection. These effects were dependent on androgen receptor activity. Thus, the commensal microbial community alters sex hormone levels and regulates autoimmune disease fate in individuals with high genetic risk.