993 resultados para ATLANTIC SST
Resumo:
We have examined the inter- and intra-group seasonal succession of 113 diatom and dinoflagellate taxa, as surveyed by the Continuous Plankton Recorder (CPR) in the North Atlantic, by grouping taxa according to two key functional traits: cell size (mg C cell21) and trophic strategy (photoautotrophy, mixotrophy, or heterotrophy). Mixotrophic dinoflagellates follow photoautotrophic diatoms but precede their obligate heterotrophic counterparts in the succession because of the relative advantages afforded by photosynthesizing when light and nutrients are available in spring. The mean cell size of the sampled diatoms is smallest in the summer, likely because of the higher specific nutrient affinity of smaller relative to larger cells. Contrastingly, we hypothesize that mixotrophy diminishes the size selection based on nutrient limitation and accounts for the lack of a seasonal size shift among surveyed dinoflagellates. Relatively small, heterotrophic dinoflagellates (mg C cell21 , 1023) peak after other, larger dinoflagellates, in part because of the increased abundance of their small prey during nutrientdeplete summer months. The largest surveyed diatoms (mg C cell21 . 1022) bloom later than others, and we hypothesize that this may be because of their relatively slow maximum potential growth rates and high internal nutrient storage, as well as to the slower predation of these larger cells. The new trait database and analysis presented here helps translate the taxonomic information of the CPR survey into metrics that can be directly compared with trait-based models.
Resumo:
Atmospheric inputs of mineral dust supply iron and other trace metals to the remote ocean and can influence the marine carbon cycle due to iron's role as a potentially limiting micronutrient. Dust generation, transport, and deposition are highly heterogeneous, and there are very few remote marine locations where dust concentrations and chemistry (e.g., iron solubility) are routinely monitored. Here we use aerosol and rainwater samples collected during 10 large-scale research cruises to estimate the atmospheric input of iron, aluminum, and manganese to four broad regions of the Atlantic Ocean over two 3 month periods for the years 2001–2005. We estimate total inputs of these metals to our study regions to be 4.2, 17, and 0.27 Gmol in April–June and 4.9, 14, and 0.19 Gmol in September–November, respectively. Inputs were highest in regions of high rainfall (the intertropical convergence zone and South Atlantic storm track), and rainfall contributed higher proportions of total input to wetter regions. By combining input estimates for total and soluble metals for these time periods, we calculated overall percentage solubilities for each metal that account for the contributions from both wet and dry depositions and the relative contributions from different aerosol types. Calculated solubilities were in the range 2.4%–9.1% for iron, 6.1%–15% for aluminum, and 54%–73% for manganese. We discuss sources of uncertainty in our estimates and compare our results to some recent estimates of atmospheric iron input to the Atlantic.
Resumo:
This identification guide to the copepodite developmental stages of twenty-six North Atlantic copepods has been revised and extended, to include new information, to update the taxonomy and to give additional details on how to determine sex in the later copepodite stages of gymnoplean copepods.
Resumo:
Climate change is unambiguous and its effects are clearly detected in all functional units of the Earth system. This study presents new analyses of sea-surface temperature changes and show that climate change is affecting ecosystems of the North Atlantic. Changes are seen from phytoplankton to zooplankton to fish and are modifying the dominance of species and the structure, the diversity and the functioning of marine ecosystems. Changes also range from phenological to biogeographical shifts and have involved in some regions of the Atlantic abrupt ecosystem shifts. These alterations reflect a response of pelagic ecosystems to a warmer temperature regime. Mechanisms are complex because they are nonlinear exhibiting tipping points and varying in space and time. Sensitivity of organisms to temperature changes is high, implicating that a small temperature modification can have sustained ecosystem effects. Implications of these changes for biogeochemical cycles are discussed. Two observed changes detected in the North Sea that could have opposite effects on carbon cycle are discussed. Increase in phytoplankton, as inferred from the phytoplankton colour index derived from the Continuous Plankton Recorder (CPR) survey, has been detected in the North Sea. This pattern has been accompanied by a reduction in the abundance of the herbivorous species Calanus finmarchicus. This might have reduced the grazing pressure and increase diatomaceous ‘fluff’, therefore carbon export in the North Sea. Therefore, it could be argued that the biological carbon pump might increase in this region with sea warming. In the meantime, however, the mean size of organisms (calanoid copepods) has dropped. Such changes have implications for the turnover time of biogenic carbon in plankton organisms and the mean residence time of particulate carbon they produce. The system characterising the warmer period is more based on recycling and less on export. The increase in the minimum turnover time indicates an increase in the ecosystem metabolism, which can be considered as a response of the pelagic ecosystems to climate warming. This phenomenon could reduce carbon export. These two opposite patterns of change are examples of the diversity of mechanisms and pathways the ecosystems may exhibit with climate change. Oversimplification of current biogeochemical models, often due to lack of data and biological understanding, could lead to wrong projection on the direction ecosystems and therefore some biogeochemical cycles might take in a warmer world.
Resumo:
Warming of the global climate is now unequivocal and its impact on Earth’ functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.
Resumo:
Recent strategies to sustain fish stocks have suggested a move towards an ecosystem based fisheries management (EBFM) approach. While EBFM considers the effect of fishing at the ecosystem level, it generally struggles with climate-driven environmental variability. In this study we show that the position of a fish stock within its distributional range or thermal niche (we use Icelandic and North Sea cod as examples of stocks at the centre and edge of their niche, respectively) will influence the relative importance of fishing and climate on abundance. At the warmer edge of the thermal niche of cod in the North Sea, we show a prominent influence of climate on the cod stock that is mediated through temperature effects on the plankton. In contrast, the influence of climate through its effects on plankton appears much less important at the present centre of the niche around Iceland. Recognising the potentially strong effect of climate on fish stocks, at a time of rapid global climate change, is probably an important prerequisite towards the synthesis of a cod management strategy.
Resumo:
Centropages typicus is a temperate neritic-coastal species of the North Atlantic Oceans, generally found between the latitudes of the Mediterranean and the Norwegian Sea. Therefore, the species experiences a large number of environments and adjusts its life cycle in response to changes in key abiotic parameters such as temperature. Using data from the Continuous Plankton Recorder (CPR) Survey, we review the macroecology of C. typicus and factors that influence its spatial distribution, phenology and year-to-year to decadal variability. The ecological preferences are identified and quantified. Mechanisms that allow the species to occur in such different environments are discussed and hypotheses are proposed as to how the species adapts to its environment. We show that temperature and both quantity and quality of phytoplankton are important factors explaining the space and time variability of C. typicus. These results show that C. typicus will not respond only to temperature increase in the region but also to changes in phytoplankton abundance, structure and composition and timing of occurrence. Methods such as a decision tree can help to forecast expected changes in the distribution of this species with hydro-climatic forcing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The global increase in atmospheric carbon dioxide concentration is potentially threatening marine biodiversity in two ways. First, carbon dioxide and other greenhouse gases accumulating in the atmosphere are causing global warming1. Second, carbon dioxide is altering sea water chemistry, making the ocean more acidic2. Although temperature has a cardinal influence on all biological processes from the molecular to the ecosystem level3, acidification might impair the process of calcification or exacerbate dissolution of calcifying organisms4. Here, we show however that North Atlantic calcifying plankton primarily responded to climate-induced changes in temperatures during the period 1960–2009, overriding the signal from the effects of ocean acidification. We provide evidence that foraminifers, coccolithophores, both pteropod and nonpteropod molluscs and echinoderms exhibited an abrupt shift circa 1996 at a time of a substantial increase in temperature5 and that some taxa exhibited a poleward movement in agreement with expected biogeographical changes under sea temperature warming6,7. Although acidification may become a serious threat to marine calcifying organisms, our results suggest that over the study period the primary driver of North Atlantic calcifying planktonwas oceanic temperature.
Resumo:
The present investigation reviews published data on the feeding rates and prey selection of Oithona similis females, Calanus finmarchicus nauplii and females in the Irminger Sea in April/May and July/August 2002. Our aim was to examine how the feeding rates and prey selection of these three copepod stages respond to concomitant changes in microplankton community composition and prey abundance. Copepods typically ingested prey overall according to its ambient concentration although significant species and stage-specific differences in prey-type ingestion and selection were apparent. Despite being of comparable weight, the ingestion rates of C. finmarchicus nauplii were always higher than those of the O. similis females. Moreover, C. finmarchicus nauplii and O. similis females fed preferentially on diatoms and ciliates respectively, whereas adult female C. finmarchicus showed limited prey selectivity. Copepod grazing impact on total and on ciliates/dinoflagellates standing stock was <0.5 and <2%, respectively. We attribute this result to a combination of low grazing rates, low copepod abundance and low microplankton biomass, all of which are indicative of the non-bloom conditions under which these experiments were conducted. The differences in copepod feeding rates and prey selection we report reflect species and stage-specific eco-physiological adaptations, which may act as important driving forces for marine ecosystem structuring and functioning.
Resumo:
This study describes phenotypic and genotypic variations in the planktonic copepod, Centropages typicus (Copepoda: Calanoida) that indicate differentiation between geographical samples. We found consistent differences in the morphology of the chela of the sexually modified fifth pereiopod (P5) of male C. typicus between samples from the Mediterranean, western North Atlantic and eastern North Atlantic. A 560 base pairs (bp) region of the C. typicus mitochondrial cytochrome c oxidase subunit I (COI) and a 462 bp fragment of the nuclear rDNA internal transcribed spacer (ITS) tandem array were analysed to determine whether these morphological variations reflect population genetic differentiation. Mitochondrial haplotype diversity was found to be high with 100 unique COI haplotypes among 116 individuals. Analysis of mtCOI variation suggested differentiation between the Mediterranean and Atlantic populations but no separation was detected within the Atlantic. Intragenomic variation in the ITS array suggested genetic differentiation between samples from the western North Atlantic and those from the eastern North Atlantic and Mediterranean. Breeding experiments would be required to elucidate the extent of genetic isolation between C. typicus from the different population centres.
Resumo:
As the UK's national marine data centre, a key responsibility of the British Oceanographic Data Centre (BODC) is to provide data management support for the scientific activities of complex multi-disciplinary long-term research programmes. Since the initial cruise in 1995, the NERC funded Atlantic Meridional Transect (AMT) project has undertaken 18 north–south transects of the Atlantic Ocean. As the project has evolved there has been a steady growth in the number of participants, the volume of data, its complexity and the demand for data. BODC became involved in AMT in 2002 at the beginning of phase II of this programme and since then has provided continuous support to the AMT and the wider scientific community through the rescue, quality control, processing and access to the data. The data management is carried out by a team of specialists using a sophisticated infrastructure and hardware to manage, integrate and serve physical, biological and chemical data. Here, we discuss the approach adopted, techniques applied and some guiding principles for management of large multi-disciplinary programmes.
Resumo:
The genus Oithona is considered the most ubiquitous and abundant copepod group in the world oceans. Although they generally make-up a lower proportion of the total copepod biomass, because of their high numerical abundance, preferential feeding for microzooplankton and motile preys, Oithona spp. plays an important role in microbial food webs and can provide a food source for other planktonic organisms. Thus, changes in Oithona spp. overall abundance and the timing of their annual maximum (i.e. phenology) can have important consequences for both energy flow within marine food webs and secondary production. Using the long term data (1954-2005) collected by the Continuous Plankton Recorder (CPR), the present study, investigates whether global climate warming my have affected the long term trends in Oithona spp. population abundance and phenology in relation to biotic and abiotic variables and over a wide latitudinal range and diverse oceanographic regions in the Atlantic, Pacific and Southern Ocean.