877 resultados para AS1020 mild steel alloy
Resumo:
In the present investigation, basic studies were conducted using Inclined pin-on-plate sliding Tester to understand the role of surface texture of hard material against soft materials during sliding. Soft materials such as Al-Mg alloy, pure Al and pure Mg were used as pins and 080 M40 steel was used as plate in the tests. Two surface parameters of steel plates — roughness and texture — were varied in tests. It was observed that the transfer layer formation and the coefficient of friction which has two components, namely adhesion and plowing component, are controlled by the surface texture of harder material. For the case of Al-Mg alloy, stick-slip phenomenon was absent under both dry and lubricated conditions. However, for the case of Al, it was observed only under lubricated conditions while for the case of Mg, it was observed under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on plowing component of friction. The plowing component of friction was highest for the surface that promotes plane strain conditions near the surface and was lowest for the surface that promotes plane stress conditions near the surface.
Resumo:
A facile metal-free route of oxidative amination of benzoxazole by activation of C-H bonds with secondary or primary amines in the presence of catalytic iodine in aqueous tert-butyl hydroperoxide proceeds smoothly at ambient temperature under neat reaction condition to furnish the high yield of the aminated product. This user-friendly method to form C-N bonds produces tertiary butanol and water as the byproduct, which are environmentally benign. The application of the methodology is demonsrated by synthesizing therapeutically active benzoxazoles.
Resumo:
In the present investigation, soft materials, such as Al-4Mg alloy, high-purity Al and pure Mg pins were slid against hard steel plates of various surface textures to study the response of materials during sliding. The experiments were conducted using an inclined pin-on-plate sliding apparatus under both dry and lubricated conditions in an ambient environment. Two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. In general, the response was dependent on material pair, normal load, lubrication, and surface texture of the harder material. More specifically, for the case of Al-4Mg alloy, the stick-slip response was absent under both dry and lubricated conditions. For Al, stick-slip was observed only under lubricated conditions. For the case of Mg, the stick-slip response was seen under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on the plowing component of friction. The plowing component of friction was the highest for the surfaces that promoted plane strain conditions and was the lowest for the surfaces that promoted plane stress conditions near the surface.
Resumo:
The properties of widely used Ni-Ti-based shape memory alloys (SMAs) are highly sensitive to the underlying microstructure. Hence, controlling the evolution of microstructure during high-temperature deformation becomes important. In this article, the ``processing maps'' approach is utilized to identify the combination of temperature and strain rate for thermomechanical processing of a Ni(42)Ti(50)Cu(8) SMA. Uniaxial compression experiments were conducted in the temperature range of 800-1050 degrees C and at strain rate range of 10(-3) and 10(2) s(-1). Two-dimensional power dissipation efficiency and instability maps have been generated and various deformation mechanisms, which operate in different temperature and strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results show that the safe window for industrial processing of this alloy is in the range of 800-850 degrees C and at 0.1 s(-1), which leads to grain refinement and strain-free grains. Regions of the instability were identified, which result in strained microstructure, which in turn can affect the performance of the SMA.
Resumo:
The present work is an attempt to study crack initiation in nuclear grade, 9Cr-1Mo ferritic steel using AE as an online NDE tool. Laboratory experiments were conducted on 5 heat treated Compact Tension (CT) specimens made out of nuclear grade 9Cr-1Mo ferritic steel by subjecting them to cyclic tensile load. The CT Specimens were of 12.5 mm thickness. The Acoustic emission test system was setup to acquire the data continuously during the test by mounting AE sensor on one of the surfaces of the specimen. This was done to characterize AE data pertaining to crack initiation and then discriminate the samples in terms of their heat treatment processes based on AE data. The AE signatures at crack initiation could conclusively bring to fore the heat treatment distinction on a sample to sample basis in a qualitative sense.Thus, the results obtained through these investigations establish a step forward in utilizing AE technique as an on-line measurement tool for accurate detection and understanding of crack initiation and its profile in 9Cr-1Mo nuclear grade steel subjected to different processes of heat treatment.
Resumo:
The effect of electromagnetic stirring of melt on the final macrosegregation in the continuous casting of an aluminium alloy billet is studied numerically. A continuum mixture model for solidification in presence of electromagnetic stirring is presented. As a case study, simulations are performed for direct chill (DC) casting of an Al-Cu alloy and the effect of electromagnetic stirring on macrosegregation is analysed. The model predicts the temperature, velocity, and species distribution in the mold. As a special case, we have also studied the case in which dendritic particles are fragmented at the interface due to vigorous electromagnetic stirring. For this case, an additional conservation equation for the transport of solid fraction is solved. For modeling the resistance offered by moving solid crystals, a switching function in the momentum equations is used for variation of viscosity. The fragmentation and transport of dendritic particles has a profound effect on the final macrosegregation and microstructure of the solidified billet. It is found that the application of electromagnetic stirring in continuous casting of billets results in better temperature uniformity and macrosegregation pattern.
Resumo:
In this paper, we report a significant improvement in mechanical properties of near eutectic Nb-Si alloys by addition of Gallium (Ga) and control of microstructural length scale. A comparative study of two alloys Nb-18.79 at.%Si and Nb-20.2 at.%Si-2.7 at.%Ga were carried out. The microstructure refinements were carried out by vacuum suction casting in water cooled thick copper mold. It is shown that addition of Ga suppresses Nb(3)Si phase and promotes beta-Nb(5)Si(3) phase. The microstructural length scale and in particular eutectic spacing reduces significantly to 50-100 nm in suction cast ternary alloys. Compression test shows a strength of 2.8 +/- 0.1 GPa and plasticity of 4.3 +/- 0.03%. In comparison, the binary Nb-18.79 at.%Si alloy processed under identical conditions exhibit coarser length scale (300-400 nm) and brittle behavior. The fracture toughness of Ga containing suction cast alloy shows a value of 24.11 +/- 0.5 MPa root m representing a major improvement for bulk Nb-Si eutectic alloy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely, 1, 3, 5, 10 and 20 using pin-on-plate reciprocating sliding tester. Tests were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. A constant normal load of 35 N was applied in the tests. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plates were measured using an optical profilometer. In the experiments, it was observed that the coefficient of friction and formation of the transfer layer depend on the die surface textures under both dry and lubricated conditions. More specifically, the coefficient of friction decreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles. However, the coefficient of friction is highest for the sliding perpendicular to the unidirectional textures and least for the random textures under both dry and lubricated conditions. The difference in friction values between these two surfaces decreases with increasing number of cycles. The variation in the coefficient of friction under both dry and lubrication conditions is attributed to the change in texture of the surfaces during sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The dry sliding wear and friction behaviour of A356 Al alloy and its composites containing 10 and 20 vol.% SiC(P) have been studied using pin-on-disc set up. In these tests, A356 Al alloy and its composites are used as disc whereas brake pad was used in the form of pins. Wear tests were carried out at a load of 192 N and the sliding speed was varied from 1 to 5 m/s. Tests were done for a sliding distance of 15 km. The effects of sliding velocity on the wear rate, coefficient of friction and nature of tribolayers formed on discs have been studied. Wear rates of composites as calculated by weight loss method, found to be negative at sliding speed of more than 2 m/s. Worn surfaces of pins and discs have been analyzed using scanning electron microscope. SEM and EDAX analysis of worn surfaces of composite discs showed formation of tribolayers, consisting of mixture of oxides of Al, Si, Cu, Ca, Ba, Mg, and Fe. In these layers, copper and barium content found to be increase with sliding speed in the case of composites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present investigation, various kinds of surface textures were attained on the steel plates. Roughness of the textures was varied using various grinding or polishing methods. The surface textures were characterized in terms of roughness parameters using an optical profilometer. Then experiments were conducted using an inclined pin-on-plate sliding apparatus to identify the role of surface texture and its roughness parameters on coefficient of friction and transfer layer formation. In the experiments, a soft polymer (polypropylene) was used for the pin and hardened steel was used for the plate. Experiments were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. The normal load was varied from 1 to 120 N during the tests. The morphologies of the worn surfaces of the pins and the formation of a transfer layer on the steel plate surfaces were observed using a scanning electron microscope. Based on the experimental results, it was observed that the transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, were controlled by the surface texture of the harder mating surfaces and were less dependent of surface roughness (R(a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. Among the various surface roughness parameters studied, the mean slope of the profile, Delta(a), was found to most accurately characterize variations in the friction and wear behavior. (C) 2011 Elsevier B.V. All rights reserved.