859 resultados para ANSYS CFD
Resumo:
This work represents ongoing efforts to study high-enthalpy carbon dioxide flows in anticipation of the upcoming Mars Science Laboratory (MSL) and future missions to the red planet. The work is motivated by observed anomalies between experimental and numerical studies in hypervelocity impulse facilities for high enthalpy carbon dioxide flows. In this work, experiments are conducted in the Hypervelocity Expansion Tube (HET) which, by virtue of its flow acceleration process, exhibits minimal freestream dissociation in comparison to reflected shock tunnels. This simplifies the comparison with computational result as freestream dissociation and considerable thermochemical excitation can be neglected. Shock shapes of the MSL aeroshell and spherical geometries are compared with numerical simulations incorporating detailed CO2 thermochemical modeling. The shock stand-off distance has been identified in the past as sensitive to the thermochemical state and as such, is used here as an experimental measurable for comparison with CFD and two different theoretical models. It is seen that models based upon binary scaling assumptions are not applicable for the low-density, small-scale conditions of the current work. Mars Science Laboratory shock shapes at zero angle of attack are also in good agreement with available data from the LENS X expansion tunnel facility, confi rming results are facility-independent for the same type of flow acceleration, and indicating that the flow velocity is a suitable first-order matching parameter for comparative testing. In an e ffort to address surface chemistry issues arising from high-enthalpy carbon dioxide ground-test based experiments, spherical stagnation point and aeroshell heat transfer distributions are also compared with simulation. Very good agreement between experiment and CFD is seen for all shock shapes and heat transfer distributions fall within the non-catalytic and super-catalytic solutions. We also examine spatial temperature profiles in the non-equilibrium relaxation region behind a stationary shock wave in a hypervelocity air Mach 7.42 freestream. The normal shock wave is established through a Mach reflection from an opposing wedge arrangement. Schlieren images confirm that the shock con guration is steady and the location is repeatable. Emission spectroscopy is used to identify dissociated species and to make vibrational temperature measurements using both the nitric oxide and the hydroxyl radical A-X band sequences. Temperature measurements are presented at selected locations behind the normal shock. LIFBASE is used as the simulation spectrum software for OH temperature-fitting, however the need to access higher vibrational and rotational levels for NO leads to the use of an in-house developed algorithm. For NO, results demonstrate the contribution of higher vibrational and rotational levels to the spectra at the conditions of this study. Very good agreement is achieved between the experimentally measured NO vibrational temperatures and calculations performed using an existing state-resolved, three-dimensional forced harmonic oscillator thermochemical model. The measured NO A-X vibrational temperatures are significantly higher than the OH A-X temperatures.
Resumo:
Every year in the US and other cold-climate countries considerable amount of money is spent to restore structural damages in conventional bridges resulting from (or “caused by”) salt corrosion in bridge expansion joints. Frequent usage of deicing salt in conventional bridges with expansion joints results in corrosion and other damages to the expansion joints, steel girders, stiffeners, concrete rebar, and any structural steel members in the abutments. The best way to prevent these damages is to eliminate the expansion joints at the abutment and elsewhere and make the entire bridge abutment and deck a continuous monolithic structural system. This type of bridge is called Integral Abutment Bridge which is now widely used in the US and other cold-climate countries. In order to provide lateral flexibility, the entire abutment is constructed on piles. Piles used in integral abutments should have enough capacity in the perpendicular direction to support the vertical forces. In addition, piles should be able to withstand corrosive environments near the surface of the ground and maintain their performance during the lifespan of the bridge. Fiber Reinforced Polymer (FRP) piles are a new type of pile that can not only accommodate large displacements, but can also resist corrosion significantly better than traditional steel or concrete piles. The use of FRP piles extends the life of the pile which in turn extends the life of the bridge. This dissertation studies FRP piles with elliptical shapes. The elliptical shapes can simultaneously provide flexibility and stiffness in two perpendicular axes. The elliptical shapes can be made using the filament winding method which is a less expensive method of manufacturing compared to the pultrusion or other manufacturing methods. In this dissertation a new way is introduced to construct the desired elliptical shapes with the filament winding method. Pile specifications such as dimensions, number of layers, fiber orientation angles, material, and soil stiffness are defined as parameters and the effects of each parameter on the pile stresses and pile failure have been studied. The ANSYS software has been used to model the composite materials. More than 14,000 nonlinear finite element pile models have been created, each slightly different from the others. The outputs of analyses have been used to draw curves. Optimum values of the parameters have been defined using generated curves. The best approaches to find optimum shape, angle of fibers and types of composite material have been discussed.
Resumo:
The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.
Resumo:
Tässä työssä perehdytään soodakattiloiden vesikiertomallin rakentamiseen. Työn päätavoitteena on kehittää simulointimallia varten taulukkolaskentapohja, jonka avulla soodakattilan lämpövuotietoja on yksinkertaista ja nopeaa käsitellä ja siirtää Apros 6 -simulointiohjelmaan. Lisäksi tarkoituksena on pyrkiä automatisoimaan työvaiheet mahdollisimman pitkälle, jolloin vesikiertolaskennan tekeminen yksinkertaistuisi, yhtenäistyisi ja tarkentuisi. Tämä on mahdollista Excel- makrojen ja Apros 6:n uusien toimintojen avulla. Apros 6:ssa on nyt mahdollista hyödyntää SCL- komentotiedostoja, joiden avulla sujuva tiedonsiirto Aproksen ja Excelin välillä vodaan toteuttaa. Vesikiertolaskentaan käytettävän datan käsittely on aikaisemmin ollut työlästä ja sen tarkkuus on pitkälti riippunut mallintajasta. Tässä diplomityössä päästään hyödyntämään uusimpia ja realistisempia soodakattiloiden CFD- malleja, joiden avulla pystytään luomaan aikaisempaa tarkemmat lämpövuojakaumat soodakattilan lämpöpinnoille. Tämä muutos parantaa vesikiertolaskennan tarkkuutta. Työn kokeellisessa osassa uutta Excel laskentatyökalua ja uusia lämpövuoarvoja testataan käytännössä. Eräs vanha Apros- vesikiertomalli päivitetään uusilla lämpövuoarvoilla ja sen rakenteeseen tehdään muutoksia tarkkuuden parantamiseksi. Uuden mallin toimivuutta testataan myös 115 %:n kapasiteetilla ja tutkitaan kuinka kyseinen vesikiertopiiri reagoi suurempaan lämpötehoon. Näitä kolmea eri tilannetta vertaillaan toisiinsa ja tarkastellaan eroavaisuuksia niiden vesi-höyrypiireissä.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, 2015.
Resumo:
When components of a propulsion system are exposed to elevated flow temperatures there is a risk for catastrophic failure if the components are not properly protected from the thermal loads. Among several strategies, slot film cooling is one of the most commonly used, yet poorly understood active cooling techniques. Tangential injection of a relatively cool fluid layer protects the surface(s) in question, but the turbulent mixing between the hot mainstream and cooler film along with the presence of the wall presents an inherently complex problem where kinematics, thermal transport and multimodal heat transfer are coupled. Furthermore, new propulsion designs rely heavily on CFD analysis to verify their viability. These CFD models require validation of their results, and the current literature does not provide a comprehensive data set for film cooling that meets all the demands for proper validation, namely a comprehensive (kinematic, thermal and boundary condition data) data set obtained over a wide range of conditions. This body of work aims at solving the fundamental issue of validation by providing high quality comprehensive film cooling data (kinematics, thermal mixing, heat transfer). 3 distinct velocity ratios (VR=uc/u∞) are examined corresponding to wall-wake (VR~0.5), min-shear (VR ~ 1.0), and wall-jet (VR~2.0) type flows at injection, while the temperature ratio TR= T∞/Tc is approximately 1.5 for all cases. Turbulence intensities at injection are 2-4% for the mainstream (urms/u∞, vrms/u∞,), and on the order of 8-10% for the coolant (urms/uc, vrms/uc,). A special emphasis is placed on inlet characterization, since inlet data in the literature is often incomplete or is of relatively low quality for CFD development. The data reveals that min-shear injection provides the best performance, followed by the wall-jet. The wall-wake case is comparably poor in performance. The comprehensive data suggests that this relative performance is due to the mixing strength of each case, as well as the location of regions of strong mixing with respect to the wall. Kinematic and thermal data show that strong mixing occurs in the wall-jet away from the wall (y/s>1), while strong mixing in the wall-wake occurs much closer to the wall (y/s<1). Min-shear cases exhibit noticeably weaker mixing confined to about y/s=1. Additionally to these general observations, the experimental data obtained in this work is analyzed to reveal scaling laws for the inlets, near-wall scaling, detecting and characterizing coherent structures in the flow as well as to provide data reduction strategies for comparison to CFD models (RANS and LES).
Resumo:
Traditional air delivery to high-bay buildings involves ceiling level supply and return ducts that create an almost-uniform temperature in the space. Problems with this system include potential recirculation of supply air and higher-than-necessary return air temperatures. A new air delivery strategy was investigated that involves changing the height of conventional supply and return ducts to have control over thermal stratification in the space. A full-scale experiment using ten vertical temperature profiles was conducted in a manufacturing facility over one year. The experimental data was utilized to validated CFD and EnergyPlus models. CFD simulation results show that supplying air directly to the occupied zone increases stratification while holding thermal comfort constant during the cooling operation. The building energy simulation identified how return air temperature offset, set point offset, and stratification influence the building’s energy consumption. A utility bill analysis for cooling shows 28.8% HVAC energy savings while the building energy simulation shows 19.3 – 37.4% HVAC energy savings.
Resumo:
This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2015.
Resumo:
Common building energy modeling approaches do not account for the influence of surrounding neighborhood on the energy consumption patterns. This thesis develops a framework to quantify the neighborhood impact on a building energy consumption based on the local wind flow. The airflow in the neighborhood is predicted using Computational Fluid Dynamics (CFD) in eight principal wind directions. The developed framework in this study benefits from wind multipliers to adjust the wind velocity encountering the target building. The input weather data transfers the adjusted wind velocities to the building energy model. In a case study, the CFD method is validated by comparing with on-site temperature measurements, and the building energy model is calibrated using utilities data. A comparison between using the adjusted and original weather data shows that the building energy consumption and air system heat gain decreased by 5% and 37%, respectively, while the cooling gain increased by 4% annually.
Resumo:
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA’s Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within +/- 3 Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2-2.5 Celsius lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft in 2017-2018 is also presented.
Resumo:
Este trabalho tem como objetivo desenvolver uma metodologia de seletividade cinética, para os pseudocomponentes do petróleo em escoamento gás-liquido em colunas de bolhas usando a Fluidodinâmica Computacional (CFD). Uma geometria cilíndrica de 2,5m de altura e 0,162m de diâmetro foi usada tanto na validação fluidodinâmica com base em dados experimentais da literatura, como na análise cinética do reator operando em dois modos distintos em relação a fase líquida: batelada e contínuo. Todos os casos de estudo operam em regime heterogêneo de escoamento, com velocidade superficial do gás igual a 8 cm/s e diâmetro médio de bolhas de 6 mm. O modelo fluidodinâmico validado apresentou boa concordância com os dados experimentais, sendo empregado como base para a implementação do modelo cinético de rede de Krishna e Saxena (1989). A análise da hidroconversão foi realizada a 371ºC, e os resultados mostraram o comportamento esperado para o processo reativo estudado, definindo-se os tempos (batelada) e posições axiais (contínuo) de coleta ideal para os pseudocomponentes leves. Em síntese, ressaltase o uso da ferramenta CFD no entendimento, desenvolvimento e otimização de processos.
Resumo:
This thesis work deals with a mathematical description of flow in polymeric pipe and in a specific peristaltic pump. This study involves fluid-structure interaction analysis in presence of complex-turbulent flows treated in an arbitrary Lagrangian-Eulerian (ALE) framework. The flow simulations are performed in COMSOL 4.4, as 2D axial symmetric model, and ABAQUS 6.14.1, as 3D model with symmetric boundary conditions. In COMSOL, the fluid and structure problems are coupled by monolithic algorithm, while ABAQUS code links ABAQUS CFD and ABAQUS Standard solvers with single block-iterative partitioned algorithm. For the turbulent features of the flow, the fluid model in both codes is described by RNG k-ϵ. The structural model is described, on the basis of the pipe material, by Elastic models or Hyperelastic Neo-Hookean models with Rayleigh damping properties. In order to describe the pulsatile fluid flow after the pumping process, the available data are often defective for the fluid problem. Engineering measurements are normally able to provide average pressure or velocity at a cross-section. This problem has been analyzed by McDonald's and Womersley's work for average pressure at fixed cross section by Fourier analysis since '50, while nowadays sophisticated techniques including Finite Elements and Finite Volumes exist to study the flow. Finally, we set up peristaltic pipe simulations in ABAQUS code, by using the same model previously tested for the fl uid and the structure.
Resumo:
Wood is considered an ideal solution for floors and roofs building construction, due the mechanical and thermal properties, associated with acoustic conditions. These constructions have good sound absorption, heat insulation and relevant architectonic characteristics. They are used in many civil applications: concert and conference halls, auditoriums, ceilings, walls… However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behaviour with accuracy. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behaviour of the wooden slabs will be compared considering different material insulation, with different sizes, inside the cavities. A transient thermal analysis with nonlinear material behaviour will be solved using ANSYS© program. This study allows to verify the fire resistance, the temperature evolution and the char-layer, throughout a wooden cellular slab with perforations and considering the insulation effect inside the cavities.
Resumo:
Os aneurismas cerebrais são dilatações patológicas das artérias cerebrais e são conhecidos como um dos eventos cerebrovasculares mais comuns e graves. A maioria dos aneurismas cerebrais não provocam sintomas até que se tornem grandes, começando a vazar sangue ou a romperem-se. O principal objetivo deste trabalho é a caracterização do comportamento biomecânico de aneurismas, tendo em consideração diferentes parâmetros geométricos e fisiológicos, de forma a analisar o comportamento da parede de um vaso sanguíneo aquando a formação de um aneurisma. O estudo numérico foi efetuado considerando diferentes modelos constitutivos híper-elásticos, que é o caso dos vasos sanguíneos, com intuito de verificar qual o que melhor se adequa a este tipo de estudos e de analisar e calcular os deslocamentos e as deformações ocorridas no aneurisma cerebral. Os diferentes modelos constitutivos foram aproximados por uma curva de tensão/deformação que contém valores experimentais de um ensaio de tração até à rutura de uma mucosa vaginal. Foram utilizados dois módulos do software Ansys®, sendo estes o Fluent e o Static Structural. O primeiro utilizou-se determinar a pressão exercida pelo fluido na parede interior do canal, sendo este resultado exportado para o Static Structural, permitindo assim fazer o estudo estrutural do canal com aneurisma. Concluiu-se que a nível qualitativo, qualquer modelo constitutivo estudado pode ser utilizado, pois todos mostram o mesmo tipo de distribuição de deslocamentos e deformações. No entanto, os modelos mais fiáveis a nível quantitativo é o modelo de Mooney-Rivlin 5 Parameter e o Polynomial 2nd Order, pois apresentam os mesmos resultados.