978 resultados para AEROBIC OXIDATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mercury is a potent neurotoxin even at low concentrations. The unoxidised metal has a high vapour pressure and can circulate through the atmosphere, but when oxidised can deposit and be accumulated through the food chain. This work aims to investigate the oxidation processes of atmospheric Hg0(g). The first part describes efforts to make a portable Hg sensor based on Cavity Enhanced Absorption Spectroscopy (CEAS). The detection limit achieved was 66 ngm−3 for a 10 second averaging time. The second part of this work describes experiments carried out in a temperature controlled atmospheric simulation chamber in the Desert Research Institute, Reno, Nevada, USA. The chamber was built around an existing Hg CRDS system that could measure Hg concentrations in the chamber of<100 ngm−3 at 1 Hz enabling reactions to be followed. The main oxidant studied was bromine, which was quantified with a LED based CEAS system across the chamber. Hg oxidation in the chamber was found to be mostly too slow for current models to explain. A seven reaction model was developed and tested to find which parameters were capable of explaining the deviation. The model was overdetermined and no unique solution could be found. The most likely possibility was that the first oxidation step Hg + Br →HgBr was slower than the preferred literature value by a factor of two. However, if the more uncertain data at low [Br2] was included then the only parameter that could explain the experiments was a fast, temperature independent dissociation of HgBr some hundreds of times faster than predicted thermolysis or photolysis rates. Overall this work concluded that to quantitatively understand the reaction of Hg with Br2, the intermediates HgBr and Br must be measured. This conclusion will help to guide the planning of future studies of atmospheric Hg chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidation-reduction (redox) potential is a fundamental physicochemical parameter that affects the growth of microorganisms in dairy products and contributes to a balanced flavour development in cheese. Even though redox potential has an important impact on the quality of dairy products, it is not usually monitored in dairy industry. The aims of this thesis were to develop practical methods for measuring redox potential in cheese, to provide detailed information on changes in redox potential during the cheesemaking and cheese ripening and how this parameter is influenced by starter systems and to understand the relationship between redox potential and cheese quality. Methods were developed for monitoring redox potential during cheesemaking and early in ripening. Changes in redox potential during laboratory scale manufacture of Cheddar, Gouda, Emmental, and Camembert cheeses were determined. Distinctive kinetics of reduction in redox potential during cheesemakings were observed, and depended on the cheese technology and starter culture utilised. Redox potential was also measured early in ripening by embedding electrodes into Cheddar cheese at moulding together with the salted curd pieces. Using this approach it was possible to monitor redox potential during the pressing stage. The redox potential of Emmental cheese was also monitored during ripening. Moreover, since bacterial growth drives the reduction in redox potential during cheese manufacture and ripening, the ability of Lactococcus lactis strains to affect redox potential was studied. Redox potential of a Cheddar cheese extract was altered by bacterial growth and there were strain-specific differences in the nature of the redox potential/time curves obtained. Besides, strategies to control redox potential during cheesemaking and ripening were developed. Oxidizing or reducing agents were added to the salted curd before pressing and results confirmed that a negative redox potential is essential for the development of sulfur compounds in Cheddar cheese. Overall, the studies described in this thesis gave an evidence of the importance of the redox potential on the quality of dairy products. Redox potential could become an additional parameter used to select microorganisms candidate as starters in fermented dairy products. Moreover, it has been demonstrated that the redox potential influences the development of flavour component. Thus, measuring continuously changes in redox potential of a product and controlling, and adjusting if necessary, the redox potential values during manufacture and ripening could be important in the future of the dairy industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The Lung Cancer Exercise Training Study (LUNGEVITY) is a randomized trial to investigate the efficacy of different types of exercise training on cardiorespiratory fitness (VO2peak), patient-reported outcomes, and the organ components that govern VO2peak in post-operative non-small cell lung cancer (NSCLC) patients. METHODS/DESIGN: Using a single-center, randomized design, 160 subjects (40 patients/study arm) with histologically confirmed stage I-IIIA NSCLC following curative-intent complete surgical resection at Duke University Medical Center (DUMC) will be potentially eligible for this trial. Following baseline assessments, eligible participants will be randomly assigned to one of four conditions: (1) aerobic training alone, (2) resistance training alone, (3) the combination of aerobic and resistance training, or (4) attention-control (progressive stretching). The ultimate goal for all exercise training groups will be 3 supervised exercise sessions per week an intensity above 70% of the individually determined VO2peak for aerobic training and an intensity between 60 and 80% of one-repetition maximum for resistance training, for 30-45 minutes/session. Progressive stretching will be matched to the exercise groups in terms of program length (i.e., 16 weeks), social interaction (participants will receive one-on-one instruction), and duration (30-45 mins/session). The primary study endpoint is VO2peak. Secondary endpoints include: patient-reported outcomes (PROs) (e.g., quality of life, fatigue, depression, etc.) and organ components of the oxygen cascade (i.e., pulmonary function, cardiac function, skeletal muscle function). All endpoints will be assessed at baseline and postintervention (16 weeks). Substudies will include genetic studies regarding individual responses to an exercise stimulus, theoretical determinants of exercise adherence, examination of the psychological mediators of the exercise - PRO relationship, and exercise-induced changes in gene expression. DISCUSSION: VO2peak is becoming increasingly recognized as an outcome of major importance in NSCLC. LUNGEVITY will identify the optimal form of exercise training for NSCLC survivors as well as provide insight into the physiological mechanisms underlying this effect. Overall, this study will contribute to the establishment of clinical exercise therapy rehabilitation guidelines for patients across the entire NSCLC continuum. TRIAL REGISTRATION: NCT00018255.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The Exercise Intensity Trial (EXcITe) is a randomized trial to compare the efficacy of supervised moderate-intensity aerobic training to moderate to high-intensity aerobic training, relative to attention control, on aerobic capacity, physiologic mechanisms, patient-reported outcomes, and biomarkers in women with operable breast cancer following the completion of definitive adjuvant therapy. METHODS/DESIGN: Using a single-center, randomized design, 174 postmenopausal women (58 patients/study arm) with histologically confirmed, operable breast cancer presenting to Duke University Medical Center (DUMC) will be enrolled in this trial following completion of primary therapy (including surgery, radiation therapy, and chemotherapy). After baseline assessments, eligible participants will be randomized to one of two supervised aerobic training interventions (moderate-intensity or moderate/high-intensity aerobic training) or an attention-control group (progressive stretching). The aerobic training interventions will include 150 mins.wk⁻¹ of supervised treadmill walking per week at an intensity of 60%-70% (moderate-intensity) or 60% to 100% (moderate to high-intensity) of the individually determined peak oxygen consumption (VO₂peak) between 20-45 minutes/session for 16 weeks. The progressive stretching program will be consistent with the exercise interventions in terms of program length (16 weeks), social interaction (participants will receive one-on-one instruction), and duration (20-45 mins/session). The primary study endpoint is VO₂peak, as measured by an incremental cardiopulmonary exercise test. Secondary endpoints include physiologic determinants that govern VO₂peak, patient-reported outcomes, and biomarkers associated with breast cancer recurrence/mortality. All endpoints will be assessed at baseline and after the intervention (16 weeks). DISCUSSION: EXCITE is designed to investigate the intensity of aerobic training required to induce optimal improvements in VO₂peak and other pertinent outcomes in women who have completed definitive adjuvant therapy for operable breast cancer. Overall, this trial will inform and refine exercise guidelines to optimize recovery in breast and other cancer survivors following the completion of primary cytotoxic therapy. TRIAL REGISTRATION: NCT01186367.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stocks of the eastern oyster, Crassostrea virginica, have been declining in Chesapeake Bay since the late 19th century, and current strategies involve restoring culture of Crassostrea virginica on-bottom and in devices suspended within the water column. Sub-tidal suspension culture of Crassostrea virginica in Chesapeake Bay occurs mostly in sheltered inlets and tidal creeks and, thereby, has the potential to influence shallow water biogeochemical processes. To assess the influence of Crassostrea virginica biodeposits and benthic microalgae on sediment nitrogen and phosphorus exchange, field studies with Crassostrea virginica held in aquaculture floats and laboratory experiments were conducted. Enhanced organic nitrogen deposition from Crassostrea virginica biodeposits led to gradual increases in surface sediment nitrogen and pore water ammonium concentrations; however, modifications to pore water concentrations were not always expressed at the sediment-water interface. Benthic microalgae often modulated the influence of biodeposits on sediment nitrogen exchange but, as observed in laboratory experiments, the supply of nitrogen from Crassostrea virginica biodeposits may exceed their biological demand. Organic carbon from biodeposits had varying influences on aerobic respiration but consistently stimulated anaerobic metabolism. Shifts in net phosphorus exchange were driven by this anaerobic remineralization and concentrations of iron and manganese oxy(hydr)oxides, with transitions in fluxes coinciding with changes in benthic photosynthesis and oxidation of surface sediments. Manganese and iron oxy(hydr)oxides from biodeposits supported incorporation of added phosphorus and prevented exchange at the sediment-water interface in the absence of iron-sulfide mineral formation. Differences in the response of shallow water sediments to Crassostrea virginica biodeposits were due to the quality and quantity of biodeposits supplied, as well as the spatial and temporal variability within these sediments. Initial conditions and corresponding reference sediments illustrated the potential for sediment biogeochemistry and nutrient exchange from tidal creek sediments to vary spatially and temporally on relatively small scales. Factors influencing variability within tidal creek sediments were related to shifts in riverine freshwater inputs, macroalgal blooms, nutrient concentrations in overlying waters, and bioirrigation from the clam, Macoma balthica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly accepted that aerobic exercise increases hippocampal neurogenesis, learning and memory, as well as stress resiliency. However, human populations are widely variable in their inherent aerobic fitness as well as their capacity to show increased aerobic fitness following a period of regimented exercise. It is unclear whether these inherent or acquired components of aerobic fitness play a role in neurocognition. To isolate the potential role of inherent aerobic fitness, we exploited a rat model of high (HCR) and low (LCR) inherent aerobic capacity for running. At a baseline, HCR rats have two- to three-fold higher aerobic capacity than LCR rats. We found that HCR rats also had two- to three- fold more young neurons in the hippocampus than LCR rats as well as rats from the heterogeneous founder population. We then asked whether this enhanced neurogenesis translates to enhanced hippocampal cognition, as is typically seen in exercise-trained animals. Compared to LCR rats, HCR rats performed with high accuracy on tasks designed to test neurogenesis-dependent pattern separation ability by examining investigatory behavior between very similar objects or locations. To investigate whether an aerobic response to exercise is required for exercise-induced changes in neurogenesis and cognition, we utilized a rat model of high (HRT) and low (LRT) aerobic response to treadmill training. At a baseline, HRT and LRT rats have comparable aerobic capacity as measured by a standard treadmill fit test, yet after a standardized training regimen, HRT but not LRT rats robustly increase their aerobic capacity for running. We found that sedentary LRT and HRT rats had equivalent levels of hippocampal neurogenesis, but only HRT rats had an elevation in the number of young neurons in the hippocampus following training, which was positively correlated with accuracy on pattern separation tasks. Taken together, these data suggest that a significant elevation in aerobic capacity is necessary for exercise-induced hippocampal neurogenesis and hippocampal neurogenesis-dependent learning and memory. To investigate the potential for high aerobic capacity to be neuroprotective, doxorubicin chemotherapy was administered to LCR and HCR rats. While doxorubicin induces a progressive decrease in aerobic capacity as well as neurogenesis, HCR rats remain at higher levels on those measures compared to even saline-treated LCR rats. HCR and LCR rats that received exercise training throughout doxorubicin treatment demonstrated positive effects of exercise on aerobic capacity and neurogenesis, regardless of inherent aerobic capacity. Overall, these findings demonstrate that inherent and acquired components of aerobic fitness play a crucial role not only in the cardiorespiratory system but also the fitness of the brain.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The energy contributions of aerobic metabolism, phosphoarginine, ATP and octopine in the adductor muscles of P. magellanicus were examined during swimming and recovery. 2. A linear relationship was observed between the size of the phosphoarginine pool and the number of valve snaps. A linear increase in arginine occurred during the same period. 3. 3. Octopine was formed during the first few hours of recovery, particularly in the phasic muscle. 4. The restoration of the phosphoarginine pool appeared to be by aerobic metabolism. 5. It is concluded that the role of octopine formation is to supply energy when the tissues are anoxic and to operate at such a rate as to maintain the basal rate of energy production.