897 resultados para ACTIVE VIBRATION CONTROL
Resumo:
Analysis of perforin-deficient mice has identified the cytolytic pathway and perforin as the preeminent effector molecule in T cell-mediated control of virus infections. In this paper, we show that mice lacking both granzyme A (gzmA) and granzyme B (gzmB), which are, beside perforin, key constituents of cytolytic vesicles, are as incapable as are perforin-deficient mice of controlling primary infections by the natural mouse pathogen ectromelia, a poxvirus. Death of gzmA×gzmB double knockout mice occurred in a dose-dependent manner, despite the expression of functionally active perforin and the absence of an intrinsic defect to generate splenic cytolytic T cells. These results establish that both gzmA and gzmB are indispensable effector molecules acting in concert with perforin in granule exocytosis-mediated host defense against natural viral pathogens.
Resumo:
Accumulation of red phlobaphene pigments in sorghum grain pericarp is under the control of the Y gene. A mutable allele of Y, designated as y-cs (y-candystripe), produces a variegated pericarp phenotype. Using probes from the maize p1 gene that cross-hybridize with the sorghum Y gene, we isolated the y-cs allele containing a large insertion element. Our results show that the Y gene is a member of the MYB-transcription factor family. The insertion element, named Candystripe1 (Cs1), is present in the second intron of the Y gene and shares features of the CACTA superfamily of transposons. Cs1 is 23,018 bp in size and is bordered by 20-bp terminal inverted repeat sequences. It generated a 3-bp target site duplication upon insertion within the Y gene and excised from y-cs, leaving a 2-bp footprint in two cases analyzed. Reinsertion of the excised copy of Cs1 was identified by Southern hybridization in the genome of each of seven red pericarp revertant lines tested. Cs1 is the first active transposable element isolated from sorghum. Our analysis suggests that Cs1-homologous sequences are present in low copy number in sorghum and other grasses, including sudangrass, maize, rice, teosinte, and sugarcane. The low copy number and high transposition frequency of Cs1 imply that this transposon could prove to be an efficient gene isolation tool in sorghum.
Resumo:
An epidemiological model of tuberculosis has been developed and applied to five regions of the world. Globally, 6.7 million new cases of tuberculosis and 2.4 million deaths from tuberculosis are estimated for 1998. Based on current trends in uptake of the World Health Organization’s strategy of directly observed treatment, short-course, we expect a total of 225 million new cases and 79 million deaths from tuberculosis between 1998 and 2030. Active case-finding by using mass miniature radiography could save 23 million lives over this period. A single contact treatment for tuberculosis could avert 24 million cases and 11 million deaths; combined with active screening, it could reduce mortality by nearly 40%. A new vaccine with 50% efficacy could lower incidence by 36 million cases and mortality by 9 million deaths. Support for major extensions to global tuberculosis control strategies will occur only if the size of the problem and the potential for action are recognized more widely.
Resumo:
The ssp1 gene encodes a protein kinase involved in alteration of cell polarity in Schizosaccharomyces pombe. ssp1 deletion causes stress sensitivity, reminiscent of defects in the stress-activated MAP kinase, Spc1; however, the two protein kinases do not act through the same pathway. Ssp1 is localized mainly in the cytoplasm, but after a rise in external osmolarity it is rapidly recruited to the plasma membrane, preferentially to active growth zones and septa. Loss of Ssp1 function inhibits actin relocalization during osmotic stress, in cdc3 and cdc8 mutant backgrounds, and in the presence of latrunculin A, implicating Ssp1 in promotion of actin depolymerization. We propose a model in which Ssp1 can be activated independently of Spc1 and can partially compensate for its loss. The ssp1 deletion mutant exhibited monopolar actin distribution, but new end take-off (NETO) could be induced in these cells by exposure to KCl or to latrunculin A pulse treatment. This treatment induced NETO in cdc10 cells arrested in G1 but not in tea1 cells. This suggests that cells that contain intact cell end markers are competent to undergo NETO throughout interphase, and Ssp1 is involved in generating the NETO stimulus by enlarging the actin monomer pool.
Resumo:
Xenopus oocyte maturation requires the phosphorylation and activation of p42 mitogen-activated protein kinase (MAPK). Likewise, the dephosphorylation and inactivation of p42 MAPK are critical for the progression of fertilized eggs out of meiosis and through the first mitotic cell cycle. Whereas the kinase responsible for p42 MAPK activation is well characterized, little is known concerning the phosphatases that inactivate p42 MAPK. We designed a microinjection-based assay to examine the mechanism of p42 MAPK dephosphorylation in intact oocytes. We found that p42 MAPK inactivation is mediated by at least two distinct phosphatases, an unidentified tyrosine phosphatase and a protein phosphatase 2A–like threonine phosphatase. The rates of tyrosine and threonine dephosphorylation were high and remained constant throughout meiosis, indicating that the dramatic changes in p42 MAPK activity seen during meiosis are primarily attributable to changes in MAPK kinase activity. The overall control of p42 MAPK dephosphorylation was shared among four partially rate-determining dephosphorylation reactions, with the initial tyrosine dephosphorylation of p42 MAPK being the most critical of the four. Our findings provide biochemical and kinetic insight into the physiological mechanism of p42 MAPK inactivation.
Resumo:
The vitamin K-dependent carboxylase modifies and renders active vitamin K-dependent proteins involved in hemostasis, cell growth control, and calcium homeostasis. Using a novel mechanism, the carboxylase transduces the free energy of vitamin K hydroquinone (KH2) oxygenation to convert glutamate into a carbanion intermediate, which subsequently attacks CO2, generating the γ-carboxylated glutamate product. How the carboxylase effects this conversion is poorly understood because the active site has not been identified. Dowd and colleagues [Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. (1995) Science 269, 1684–1691] have proposed that a weak base (cysteine) produces a strong base (oxygenated KH2) capable of generating the carbanion. To define the active site and test this model, we identified the amino acids that participate in these reactions. N-ethyl maleimide inhibited epoxidation and carboxylation, and both activities were equally protected by KH2 preincubation. Amino acid analysis of 14C- N-ethyl maleimide-modified human carboxylase revealed 1.8–2.3 reactive residues and a specific activity of 7 × 108 cpm/hr per mg. Tryptic digestion and liquid chromatography electrospray mass spectrometry identified Cys-99 and Cys-450 as active site residues. Mutation to serine reduced both epoxidation and carboxylation, to 0.2% (Cys-99) or 1% (Cys-450), and increased the Kms for a glutamyl substrate 6- to 8-fold. Retention of some activity indicates a mechanism for enhancing cysteine/serine nucleophilicity, a property shared by many active site thiol enzymes. These studies, which represent a breakthrough in defining the carboxylase active site, suggest a revised model in which the glutamyl substrate indirectly coordinates at least one thiol, forming a catalytic complex that ionizes a thiol to initiate KH2 oxygenation.
Resumo:
Irregular facets (If) is a dominant mutation of Drosophila that results in small eyes with fused ommatidia. Previous results showed that the gene Krüppel (Kr), which is best known for its early segmentation function, is expressed ectopically in If mutant eye discs. However, it was not known whether ectopic Kr activity is either the cause or the result of the If mutation. Here, we show that If is a gain-of-function allele of Kr. We then used the If mutation in a genetic screen to identify dominant enhancers and suppressors of Kr activity on the third chromosome. Of 30 identified Kr-interacting loci, two were cloned, and we examined whether they also represent components of a natural Kr-dependent developmental pathway of the embryo. We show that the two genes, eyelid (eld) and extramacrochaetae (emc), which encode a Bright family-type DNA binding protein and a helix-loop-helix factor, respectively, are necessary to achieve the singling-out of a unique Kr-expressing cell during the development of the Malpighian tubules, the excretory organs of the fly. The results indicate that the Kr gain-of-function mutation If provides a tool to identify genes that are active during eye development and that a number of them function also in the control of Kr-dependent developmental processes.
Resumo:
The p53 tumor suppressor protein and the MDM2 oncoprotein form a feedback-control loop that up-regulates cellular MDM2 production, blocks p53 activity, and promotes p53 decay. tsg101 was discovered as a gene whose deficiency results in neoplastic transformation of NIH 3T3 cells and the ability to generate metastatic tumors in nude mice. Its protein product contains a domain, Ubc, characteristic of the catalytic domain of ubiquitin conjugase (E2) enzymes but lacking an active-site cysteine crucial for ubiquitin conjugase activity. Here we report that TSG101 participates with MDM2 in an autoregulatory loop that modulates the cellular levels of both proteins, and also of p53, by affecting protein decay. We show that the Ubc domain of TSG101 interferes with ubiquitination of MDM2, that TSG101 inhibits MDM2 decay and elevates its steady-state level, and that these events are associated with down-regulation of p53 protein. Conversely, pulse–chase and Western blot experiments in wild-type and mutant fibroblasts indicate that elevation of MDM2 by overexpression of wild-type p53, by amplification of the endogenous MDM2 gene, or by transfection of MDM2-expressing constructs promotes TSG101 loss, which we show occurs by 26S proteasome-dependent decay. Our results identify TSG101 as both a regulator of, and target of, MDM2/p53 circuitry.
Resumo:
Earlier extracellular recordings during natural sleep have shown that, during slow-wave sleep (SWS), neocortical neurons display long-lasting periods of silence, whereas they are tonically active and discharge at higher rates during waking and sleep with rapid eye movements (REMs). We analyzed the nature of long-lasting periods of neuronal silence in SWS and the changes in firing rates related to ocular movements during REM sleep and waking using intracellular recordings from electrophysiologically identified neocortical neurons in nonanesthetized and nonparalyzed cats. We found that the silent periods during SWS are associated with neuronal hyperpolarizations, which are due to a mixture of K+ currents and disfacilitation processes. Conventional fast-spiking neurons (presumably local inhibitory interneurons) increased their firing rates during REMs and eye movements in waking. During REMs, the firing rates of regular-spiking neurons from associative areas decreased and intracellular traces revealed numerous, short-lasting, low-amplitude inhibitory postsynaptic potentials (IPSPs), that were reversed after intracellular chloride infusion. In awake cats, regular-spiking neurons could either increase or decrease their firing rates during eye movements. The short-lasting IPSPs associated with eye movements were still present in waking; they preceded the spikes and affected their timing. We propose that there are two different forms of firing rate control: disfacilitation induces long-lasting periods of silence that occur spontaneously during SWS, whereas active inhibition, consisting of low-amplitude, short-lasting IPSPs, is prevalent during REMs and precisely controls the timing of action potentials in waking.
Resumo:
The development of Alzheimer's disease (AD) later in life may be reflective of environmental factors operating over the course of a lifetime. Educational and occupational attainments have been found to be protective against the development of the disease but participation in activities has received little attention. In a case-control study, we collected questionnaire data about 26 nonoccupational activities from ages 20 to 60. Participants included 193 people with probable or possible AD and 358 healthy control-group members. Activity patterns for intellectual, passive, and physical activities were classified by using an adaptation of a published scale in terms of “diversity” (total number of activities), “intensity” (hours per month), and “percentage intensity” (percentage of total activity hours devoted to each activity category). The control group was more active during midlife than the case group was for all three activity categories, even after controlling for age, gender, income adequacy, and education. The odds ratio for AD in those performing less than the mean value of activities was 3.85 (95% confidence interval: 2.65–5.58, P < 0.001). The increase in time devoted to intellectual activities from early adulthood (20–39) to middle adulthood (40–60) was associated with a significant decrease in the probability of membership in the case group. We conclude that diversity of activities and intensity of intellectual activities were reduced in patients with AD as compared with the control group. These findings may be because inactivity is a risk factor for the disease or because inactivity is a reflection of very early subclinical effects of the disease, or both.
Resumo:
Many elementary chemical and physical processes such as the breaking of a chemical bond or the vibrational motion of atoms within a molecule take place on a femtosecond (fs = 10−15 s) or picosecond (ps = 10−12 s) time scale. It is now possible to monitor these events as a function of time with temporal resolution well below 100 fs. This capability is based on the pump-probe technique where one optical pulse triggers a reaction and a second delayed optical pulse probes the changes that ensue. To illustrate this capability, the dynamics of ligand motion within a protein are presented. Moving beyond casual observation of a reaction to active control of its outcome requires additional experimental and theoretical effort. To illustrate the concept of control, the effect of optical pulse duration on the vibrational dynamics of a tri-atomic molecule are discussed. The experimental and theoretical resources currently available are poised to make the dream of reaction control a reality for certain molecular systems.
Resumo:
Corn (Zea mays L.) root adaptation to pH 3.5 in comparison with pH 6.0 (control) was investigated in long-term nutrient solution experiments. When pH was gradually reduced, comparable root growth was observed irrespective of whether the pH was 3.5 or 6.0. After low-pH adaptation, H+ release of corn roots in vivo at pH 5.6 was about 3 times higher than that of control. Plasmalemma of corn roots was isolated for investigation in vitro. At optimum assay pH, in comparison with control, the following increases of the various parameters were caused by low-pH treatment: (a) hydrolytic ATPase activity, (b) maximum initial velocity and Michaelis constant (c) activation energy of H+-ATPase, (d) H+-pumping activity, (e) H+ permeability of plasmalemma, and (f) pH gradient across the membranes of plasmalemma vesicles. In addition, vanadate sensitivity remained unchanged. It is concluded that plasmalemma H+-ATPase contributes significantly to the adaptation of corn roots to low pH. A restricted net H+ release at low pH in vivo may be attributed to the steeper pH gradient and enhanced H+ permeability of plasmalemma but not to deactivation of H+-ATPase. Possible mechanisms responsible for adaptation of plasmalemma H+-ATPase to low solution pH during plant cultivation are discussed.
Resumo:
We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.
Resumo:
The trimeric human single-stranded DNA-binding protein (HSSB; also called RP-A) plays an essential role in DNA replication, nucleotide excision repair, and homologous DNA recombination. The p34 subunit of HSSB is phosphorylated at the G1/S boundary of the cell cycle or upon exposure of cells to DNA damage-inducing agents including ionizing and UV radiation. We have previously shown that the phosphorylation of p34 is catalyzed by both cyclin-dependent kinase-cyclin A complex and DNA-dependent protein kinase. In this study, we investigated the effect of phosphorylation of p34 by these kinases on the replication and repair function of HSSB. We observed no significant difference with the unphosphorylated and phosphorylated forms of HSSB in the simian virus 40 DNA replication or nucleotide excision repair systems reconstituted with purified proteins. The phosphorylation status of the p34 subunit of HSSB was unchanged during the reactions. We suggest that the phosphorylated HSSB has no direct effect on the basic mechanism of DNA replication and nucleotide excision repair reactions in vitro, although we cannot exclude a role of p34 phosphorylation in modulating HSSB function in vivo through a yet poorly understood control pathway in the cellular response to DNA damage and replication.
Resumo:
Traditional visual servoing systems do not deal with the topic of moving objects tracking. When these systems are employed to track a moving object, depending on the object velocity, visual features can go out of the image, causing the fail of the tracking task. This occurs specially when the object and the robot are both stopped and then the object starts the movement. In this work, we have employed a retina camera based on Address Event Representation (AER) in order to use events as input in the visual servoing system. The events launched by the camera indicate a pixel movement. Event visual information is processed only at the moment it occurs, reducing the response time of visual servoing systems when they are used to track moving objects.