928 resultados para 5S ribosomal-RNA
Resumo:
Cytogenetic studies have been revealing a great diversity not detected, until then, in several families of fishes. Many of these groups, especially those that exhibit great diversity, like Perciformes and Siluriformes, possess species with difficult morphologic characterization, called cryptic species, commonly detected through karyotypic analyses, which reveals outstanding interespecific variations with relationship to the number and its chromosomal structures. Thus, the present work intends to contribute for the cytogenetic knowledge of marine and brackish fish species, because they peculiar life habits and by lack of cytogenetic data of your genetic aspects. Therefore, cytogenetic studies were developed in a species of Apogonidae (Perciformes), two species of sea catfishes of the family Ariidae (Siluriformes) and brackish fish Paurachenipterus galeatus (Siluriformes, Auchenipteridae), through C banding, Ag-NOR, use of base-specific flourochromes (DAPI and CMA3), as well as FISH (Fluorescent in situ hybridization) using ribosomal DNA probes 5S and 18S. The present results contribute to a better understanding of the processes of differentiation patterns and chromosome evolution in these groups. The use of other approaches (the morphology and molecular tools) will allow a larger understanding of the genetic and biological diversity of the Brazilian ichthyofauna.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The 5-year survival rate for oral cavity cancer is poorer than for breast, colon or prostate cancer, and has improved only slightly in the last three decades. Hence, new therapeutic strategies are urgently needed. Here we demonstrate by tissue micro array analysis for the first time that RNA-binding protein La is significantly overexpressed in oral squamous cell carcinoma (SCC). Within this study we therefore addressed the question whether siRNA-mediated depletion of the La protein may interfere with known tumor-promoting characteristics of head and neck SCC cells. Our studies demonstrate that the La protein promotes cell proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. We also reveal that La is required for the expression of beta-catenin as well as matrix metalloproteinase type 2 (MMP-2) within these cells. Taken together these data suggest a so far unknown function of the RNA-binding protein La in promoting tumor progression of head and neck SCC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we describe Southern blot hybridization results probed with 5S rRNA genes for several Neotropical fish species representing different taxonomic groups. All the studied species showed a general trend with the 5S rDNA tandem repeats organized in two distinct size-classes. At the same time, data on 5S rDNA organization in fish genome were summarized. Previous information on the organization and evolution of 5S rRNA gene arrays in the genome of this vertebrate group are in agreement with the Southern results here presented. Sequences obtained for several fish species have revealed the occurrence of two distinct 5S rDNA classes characterized by distinct non-transcribed spacer sequences, which are clustered in different chromosomes in some species. Moreover, the 5S rDNA loci are generally distributed in an interstitial position in the chromosomes and they are usually not syntenic to the 45S rDNA. The presence of two classes of 5S rDNA in several non-related fish species suggests that this could be a common condition for the 5S rRNA gene organization in the fish genome.
Resumo:
A substantial fraction of the eukaryotic genome consists of repetitive DNA sequences that include satellites, minisatellites, microsatellites, and transposable elements. Although extensively studied for the past three decades, the molecular forces that generate, propagate and maintain repetitive DNAs in the genomes are still discussed. To further understand the dynamics and the mechanisms of evolution of repetitive DNAs in vertebrate genome, we searched for repetitive sequences in the genome of the fish species Hoplias malabaricus. A satellite sequence, named 5SHindIII-DNA, which has a conspicuous similarity with 5S rRNA genes and spacers was identified. FISH experiments showed that the 5S rRNA bona fide gene repeats were clustered in the interstitial position of two chromosome pairs of H. malabaricus, while the satellite 5SHindIII-DNA sequences were clustered in the centromeric position in nine chromosome pairs of the species. The presence of the 5SHindIII-DNA sequences in the centromeres of several chromosomes indicates that this satellite family probably escaped from the selective pressure that maintains the structure and organization of the 5S rDNA repeats and become disperse into the genome. Although it is not feasible to explain how this sequence has been maintained in the centromeric regions, it is possible to hypothesize that it may be involved in some structural or functional role of the centromere organization.
Resumo:
Chromosomal localization of 5S rDNA and 5SHindIII repetitive sequences was carried out in several representatives of the Erythrinidae family, namely in karyomorphs A, D, and F of Hoplias malabaricus, and in H. lacerdae, Hoplerythrinusunitaeniatus and Erythrinus erythrinus. The 5S rDNA mapped interstitially in two chromosome pairs in karyomorph A and in one chromosome pair in karyomorphs D and F and in H. lacerdae. The 5SHindIII repetitive DNA mapped to the centromeric region of several chromosomes (18 to 22 chromosomes) with variations related to the different karyomorphs of H. malabaricus. on the other hand, no signal was detected in the chromosomes of H. lacerdae, H. unitaeniatus and E. erythrinus, suggesting that the 5SHindIII-DNA sequences have originated or were lost after the divergence of H. malabaricus from the other erythrinid species. The chromosome distribution of 5S rDNA and 5SHindIII-DNA sequences contributes to a better understanding of the mechanisms of karyotype differentiation among the Erythrinidae members.Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
5S rDNA sequences have proven to be valuable as genetic markers to distinguish closely related species and also in the understanding of the dynamic of repetitive sequences in the genomes. In the aim to contribute to the knowledge of the evolutionary history of Leporinus (Anostomidae) and also to contribute to the understanding of the 5S rDNA sequences organization in the fish genome, analyses of 5S rDNA sequences were conducted in seven species of this genus. The 5S rRNA gene sequence was highly conserved among Leporinus species, whereas NTS exhibit high levels of variations related to insertions, deletions, microrepeats, and base substitutions. The phylogenetic analysis of the 5S rDNA sequences clustered the species into two clades that are in agreement with cytogenetic and morphological data.