878 resultados para 380101 Sensory Processes, Perception and Performance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A trial was conducted to examine the effects of increasing levels of wheat in the diet and xylanase (ES) supplementation on nitrogen and ether extract retention, pH of the GIT, productive performance from 25 to 47 wks of age, and enzyme activity at the small intestine level. The basal diets (from 25 to 33 wks and from 33 to 47 wks) consisted of soybean meal and corn, and the wheat was introduced in the experimental diets at expenses of corn, primarily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several profiling techniques for identifying performance bottlenecks in logic programs have been developed, they are generally not automatic and in most cases they do not provide enough information for identifying the root causes of such bottlenecks. This complicates using their results for guiding performance improvement. We present a profiling method and tool that provides such explanations. Our profiler associates cost centers to certain program elements and can measure different types of resource-related properties that affect performance, preserving the precedence of cost centers in the cali graph. It includes an automatic method for detecting procedures that are performance bottlenecks. The profiling tool has been integrated in a previously developed run-time checking framework to allow verification of certain properties when they cannot be verified statically. The approach allows checking global computational properties which require complex instrumentation tracking information about previous execution states, such as, e.g., that the execution time accumulated by a given procedure is not greater than a given bound. We have built a prototype implementation, integrated it in the Ciao/CiaoPP system and successfully applied it to performance improvement, automatic optimization (e.g., resource-aware specialization of programs), run-time checking, and debugging of global computational properties (e.g., resource usage) in Prolog programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several profiling techniques for identifying performance bottlenecks in logic programs have been developed, they are generally not automatic and in most cases they do not provide enough information for identifying the root causes of such bottlenecks. This complicates using their results for guiding performance improvement. We present a profiling method and tool that provides such explanations. Our profiler associates cost centers to certain program elements and can measure different types of resource-related properties that affect performance, preserving the precedence of cost centers in the call graph. It includes an automatic method for detecting procedures that are performance bottlenecks. The profiling tool has been integrated in a previously developed run-time checking framework to allow verification of certain properties when they cannot be verified statically. The approach allows checking global computational properties which require complex instrumentation tracking information about previous execution states, such as, e.g., that the execution time accumulated by a given procedure is not greater than a given bound. We have built a prototype implementation, integrated it in the Ciao/CiaoPP system and successfully applied it to performance improvement, automatic optimization (e.g., resource-aware specialization of programs), run-time checking, and debugging of global computational properties (e.g., resource usage) in Prolog programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most CPV systems are based on Fresnel lenses. Among these, LPI-patented Fresnel-Köhler (FK) concentrator outstands owing to performance and practical reasons. The VentanaTM power train is the first off-the-shelf commercial product based on the FK and comprises both the primary (POE) lenses (a 36-units 1×1 m2 acrylic panel manufactured by EVONIK and 10×) and glass (or Savosil) secondary optics (SOE). This high concentration optical train (Cg=1,024×, ~250mm optical depth) fits with 5×5 mm2 (at least) solar cells. The optical train is the fruit of a 1-year development that has included design, modeling, prototyping and characterization, and through the process LPI had the opportunity to find out how well the actual performance correlates with models, but also learned practical aspects of a CPV system of this kind, some of which have very positive impact on system performance and reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to present a way to emulate some functions of the mammalian visual system and a model to analyze subjective sensations and visual illusions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first step in order to comply with the European Union goals of Near to Zero Energy Buildings is to reduce the energy consumption in buildings. Most of the building consumption is related to the use of active systems to maintain the interior comfort. Passive design strategies contribute to improve the interior comfort conditions, increasing the energy efficiency in buildings and reducing their energy consumption. In this work, an analysis of the passive strategies used in Net Energy Plus Houses has been made. The participating houses of the Solar Decathlon Europe 2012 competition were used as case studies. The passive design strategies of these houses were compared with the annual simulations, and the competition monitored data, especially during the Passive Monitored Period. The analysis included the thermal properties of the building envelope, geometric parameters, ratios and others passive solutions such as Thermal Energy Storage systems, evaporative cooling, night ventilation, solar gains and night sky radiation cooling. The results reflect the impact of passive design strategies on the houses' comfort and efficiency, as well as their influence in helping to achieve the Zero Energy Buildings category.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La importancia de los sistemas de recomendación ha experimentado un crecimiento exponencial como consecuencia del auge de las redes sociales. En esta tesis doctoral presentaré una amplia visión sobre el estado del arte de los sistemas de recomendación. Incialmente, estos estaba basados en fitrado demográfico, basado en contendio o colaborativo. En la actualidad, estos sistemas incorporan alguna información social al proceso de recomendación. En el futuro utilizarán información implicita, local y personal proveniente del Internet de las cosas. Los sistemas de recomendación basados en filtrado colaborativo se pueden modificar con el fin de realizar recomendaciones a grupos de usuarios. Existen trabajos previos que han incluido estas modificaciones en diferentes etapas del algoritmo de filtrado colaborativo: búsqueda de los vecinos, predicción de las votaciones y elección de las recomendaciones. En esta tesis doctoral proporcionaré un nuevo método que realizar el proceso de unficación (pasar de varios usuarios a un grupo) en el primer paso del algoritmo de filtrado colaborativo: cálculo de la métrica de similaridad. Proporcionaré una formalización completa del método propuesto. Explicaré cómo obtener el conjunto de k vecinos del grupo de usuarios y mostraré cómo obtener recomendaciones usando dichos vecinos. Asimismo, incluiré un ejemplo detallando cada paso del método propuesto en un sistema de recomendación compuesto por 8 usuarios y 10 items. Las principales características del método propuesto son: (a) es más rápido (más eficiente) que las alternativas proporcionadas por otros autores, y (b) es al menos tan exacto y preciso como otras soluciones estudiadas. Para contrastar esta hipótesis realizaré varios experimentos que miden la precisión, la exactitud y el rendimiento del método. Los resultados obtenidos se compararán con los resultados de otras alternativas utilizadas en la recomendación de grupos. Los experimentos se realizarán con las bases de datos de MovieLens y Netflix. ABSTRACT The importance of recommender systems has grown exponentially with the advent of social networks. In this PhD thesis I will provide a wide vision about the state of the art of recommender systems. They were initially based on demographic, contentbased and collaborative filtering. Currently, these systems incorporate some social information to the recommendation process. In the future, they will use implicit, local and personal information from the Internet of Things. As we will see here, recommender systems based on collaborative filtering can be used to perform recommendations to group of users. Previous works have made this modification in different stages of the collaborative filtering algorithm: establishing the neighborhood, prediction phase and determination of recommended items. In this PhD thesis I will provide a new method that carry out the unification process (many users to one group) in the first stage of the collaborative filtering algorithm: similarity metric computation. I will provide a full formalization of the proposed method. I will explain how to obtain the k nearest neighbors of the group of users and I will show how to get recommendations using those users. I will also include a running example of a recommender system with 8 users and 10 items detailing all the steps of the method I will present. The main highlights of the proposed method are: (a) it will be faster (more efficient) that the alternatives provided by other authors, and (b) it will be at least as precise and accurate as other studied solutions. To check this hypothesis I will conduct several experiments measuring the accuracy, the precision and the performance of my method. I will compare these results with the results generated by other methods of group recommendation. The experiments will be carried out using MovieLens and Netflix datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most demanding needs in cloud computing and big data is that of having scalable and highly available databases. One of the ways to attend these needs is to leverage the scalable replication techniques developed in the last decade. These techniques allow increasing both the availability and scalability of databases. Many replication protocols have been proposed during the last decade. The main research challenge was how to scale under the eager replication model, the one that provides consistency across replicas. This thesis provides an in depth study of three eager database replication systems based on relational systems: Middle-R, C-JDBC and MySQL Cluster and three systems based on In-Memory Data Grids: JBoss Data Grid, Oracle Coherence and Terracotta Ehcache. Thesis explore these systems based on their architecture, replication protocols, fault tolerance and various other functionalities. It also provides experimental analysis of these systems using state-of-the art benchmarks: TPC-C and TPC-W (for relational systems) and Yahoo! Cloud Serving Benchmark (In- Memory Data Grids). Thesis also discusses three Graph Databases, Neo4j, Titan and Sparksee based on their architecture and transactional capabilities and highlights the weaker transactional consistencies provided by these systems. It discusses an implementation of snapshot isolation in Neo4j graph database to provide stronger isolation guarantees for transactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Across the boreal forest of North America, lynx populations undergo 10-year cycles. Analysis of 21 time series from 1821 to the present demonstrates that these fluctuations are generated by nonlinear processes with regulatory delays. Trophic interactions between lynx and hares cause delayed density-dependent regulation of lynx population growth. The nonlinearity, in contrast, appears to arise from phase dependencies in hunting success by lynx through the cycle. Using a combined approach of empirical, statistical, and mathematical modeling, we highlight how shifts in trophic interactions between the lynx and the hare generate the nonlinear process primarily by shifting functional response curves during the increase and the decrease phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous research, we have found a steep learning curve in the production of semiconductors. We estimated that most production knowledge remains internal to the firm, but that a significant fraction “spills over” to other firms. The existence of such spillovers may justify government actions to stimulate research on semiconductor manufacturing technology. The fact that not all production knowledge spills over, meanwhile, creates opportunities for firms to form joint ventures and slide down their learning curves more efficiently. With these considerations in mind, in 1987 14 leading U.S. semiconductor producers, with the assistance of the U.S. government in the form of $100 million in annual subsidies, formed a research and development (R&D) consortium called Sematech. In previous research, we estimated that Sematech has induced its member firms to lower their R&D spending. This may reflect more sharing and less duplication of research, i.e., more research being done with each R&D dollar. If this is the case, then Sematech members may wish to replace any funding withdrawn by the U.S. government. This in turn would imply that the U.S. government’s contributions to Sematech do not induce more semiconductor research than would otherwise occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a large family of transducer proteins in the Archaeon Halobacterium salinarium was identified. On the basis of the comparison of the predicted structural domains of these transducers, three distinct subfamilies of transducers were proposed. Here we report isolation, complete gene sequences, and analysis of the encoded primary structures of transducer gene htrII, a member of family B, and its blue light receptor gene (sopII) of sensory rhodopsin II (SRII). The start codon ATG of the 714-bp sopII gene is one nucleotide beyond the termination codon TGA of the 2298-bp htrII gene. The deduced protein sequence of HtrII predicts a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm. HtrII has a common feature with HtrI, the sensory rhodopsin I transducer; like HtrI, HtrII possesses a hydrophilic loop structure just after the second transmembrane segment. The C-terminal 299 residues (765 amino acid residues total) of HtrII show strong homology to the signaling and methylation domain of eubacterial transducer Tsr. The hydropathy plot of the primary structure of SRII indicates seven membrane-spanning alpha-helical segments, a characteristic feature of retinylidene proteins ("rhodopsins") from a widespread family of photoactive pigments. SRII shows high identity with SRI (42%), bacteriorhodopsin (BR) (32%), and halorhodopsin (24%). The crucial positions for retinal binding sites in these proteins are nearly identical, with the exception of Met-118 (numbering according to the mature BR sequence), which is replaced by Val in SRII. In BR, residues Asp-85 and Asp-96 are crucial in proton pumping. In SRII, the position corresponding to Asp-85 in BR is conserved, but the corresponding position of Asp-96 is replaced by an aromatic Tyr. Coexpression of the htrII and sopII genes restores SRII phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI and insertion in htrII/sopII regions. This paper describes the first example that both HtrI and HtrII exist in the same halobacterial cell, confirming that different sensory rhodopsins SRI and SRII in the same organism have their own distinct transducers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Women and Performance in Corporate America The glass ceiling has been shattered. Women like Indra Nooyi, the CEO of PepsiCo.; Angela Braly, the CEO of Wellpoint; and Patricia Woertz, the CEO of Archer Daniels Midland, are proof that women can achieve top leadership positions in corporate America. However, the scarcity of female leaders occupying the top ranks of corporate America, and the significant wage gap between men and women, suggest that there are significant complications along the path toward success for women in the corporate world.The data show that a disproportionately small number of women are making it to top leadership positions in corporate America. According to the US Department of Labor, in 2007 women accounted for 46% of the total work force, and 51 % of all workers in management, professional, and related occupations. Women outnumbered men in occupations including financial managers, human resource managers, education administrators, medical and health service managers, accountants and auditors, budget analysts, and property, real estate, and social and community association managers (US Department of Labor, 2007). However, women hold only 15.2% of board director positions, 15.7% of corporate officer positions, and 6.2% of top earner positions (Catalyst, 2009b). Additionally, according to a 2008 Corporate Library survey, only 2.6% of Fortune 500 companies currently have female CEOs (as cited in Jones, 2009).The data also show that women earn less than men in the work force. The US Department of Labor found that women working full time in 2007 made only 80% of the salaries of men (US Department of Labor, 2008). Studies designed to control for factors other than gender have not been able to account for the wage gap between men and women (Eagly & Carli, 2007, US Government Accountability Office, 2003). Even among CEO's of fortune 500 companies, female CEO's make only 85% of the salaries of male CEO's (Jones, 2009).