994 resultados para 1995_03300815 TM-59 4502104
Resumo:
The authigenic minerals contained in the altered basal intervals of volcaniclastic sediments from Sites 447 and 450 of Deep Sea Drilling Project Leg 59 are dioctahedral smectite (with variable crystallinity), phillipsite, and sanidine. Sanidine seems the most widespread and common product of basal alteration in the Philippine Sea marginal basins. The neomorphic mineral suites may have been produced by (1) halmyrolisis of the volcaniclastic sediments; (2) halmyrolisis of the underlying basalts; or (3) hydrothermalism associated with basaltic intrusions. At Site 450, other authigenic minerals occur (carbonates, analcime, clinoptilolite, Fe-Mn oxides), and the basal paragenesis is consistent with a hydro thermal origin. Such a process could have produced temperatures up to 200 °C in the tuffs lying as much as 2 meters above the contact with a basaltic intrusion. Products of low-temperature alteration, however, are also present in the altered interval of this site.
Resumo:
Pyroclastic and other sediments derived from volcanic terranes are prominent constituents of the sediment column in the central and eastern parts of the Philippine Sea. On the Palau-Kyushu Ridge (Site 448), basement is overlain by over 100 meters of vitric-tuff deposits, which are overlain in turn by about 170 meters of nannofossil chalk and ooze. In contrast, thick accumulations of vitric tuff are overlain by minor accumulations of pelagic clay in the east-central Parece Vela Basin (Sites 53, 54, and 450), (Fischer, Heezen, et al., 1971), and almost 900 meters of vitric tuff, ash, and breccia overlie igneous basement at Site 451 on the adjacent West Mariana Ridge. The seismic velocities of these vitric tuffs at in situ pressures can be usefully applied in the interpretation of seismic-reflection data collected in this region.
Resumo:
Recent changes in the dynamics of Greenland's marine terminating outlet glaciers indicate a rapid and complex response to external forcing. Despite observed ice front retreat and recent geophysical evidence for accelerated mass loss along Greenland's northwestern margin, it is unclear whether west Greenland glaciers have undergone the synchronous speed-up and subsequent slow-down as observed in southeastern glaciers earlier in the decade. To investigate changes in west Greenland outlet glacier dynamics and the potential controls behind their behavior, we derive time series of front position, surface elevation, and surface slope for 59 marine terminating outlet glaciers and surface speeds for select glaciers in west Greenland from 2000 to 2009. Using these data, we look for relationships between retreat, thinning, acceleration, and geometric parameters to determine the first-order controls on glacier behavior. Our data indicate that changes in front positions and surface elevations were asynchronous on annual time scales, though nearly all glaciers retreated and thinned over the decade. We found no direct relationship between retreat, acceleration, and external forcing applicable to the entire region. In regard to geometry, we found that, following retreat, (1) glaciers with grounded termini experienced more pronounced changes in dynamics than those with floating termini and (2) thinning rates declined more quickly for glaciers with steeper slopes. Overall, glacier geometry should influence outlet glacier dynamics via stress redistribution following perturbations at the front, but our data indicate that the relative importance of geometry as a control of glacier behavior is highly variable throughout west Greenland.