995 resultados para 177-1093C
Resumo:
"July 1970."
Resumo:
"31 March 1981."
Resumo:
"1 January 1986."
Resumo:
Proceedings in the Circuit court in the cause of the Consolidated Gas Company "against William S. Jackson, as attorney general, et al.," originally instituted against "Julius M. Mayer, as attorney general, et al."
Resumo:
ODP Site 1089 is optimally located in order to monitor the occurrence of maxima in Agulhas heat and salt spillage from the Indian to the Atlantic Ocean. Radiolarian-based paleotemperature transfer functions allowed to reconstruct the climatic history for the last 450 kyr at this location. A warm sea surface temperature anomaly during Marine Isotope Stage (MIS) 10 was recognized and traced to other oceanic records along the surface branch of the global thermohaline (THC) circulation system, and is particularly marked at locations where a strong interaction between oceanic and atmospheric overturning cells and fronts occurs. This anomaly is absent in the Vostok ice core deuterium, and in oceanic records from the Antarctic Zone. However, it is present in the deuterium excess record from the Vostok ice core, interpreted as reflecting the temperature at the moisture source site for the snow precipitated at Vostok Station. As atmospheric models predict a subtropical Indian source for such moisture, this provides the necessary teleconnection between East Antarctica and ODP Site 1089, as the subtropical Indian is also the source area of the Agulhas Current, the main climate agent at our study location. The presence of the MIS 10 anomaly in the delta13C foraminiferal records from the same core supports its connection to oceanic mechanisms, linking stronger Agulhas spillover intensity to increased productivity in the study area. We suggest, in analogy to modern oceanographic observations, this to be a consequence of a shallow nutricline, induced by eddy mixing and baroclinic tide generation, which are in turn connected to the flow geometry, and intensity, of the Agulhas Current as it flows past the Agulhas Bank. We interpret the intensified inflow of Agulhas Current to the South Atlantic as responding to the switch between lower and higher amplitude in the insolation forcing in the Agulhas Current source area. This would result in higher SSTs in the Cape Basin during the glacial MIS 10, due to the release into the South Atlantic of the heat previously accumulating in the subtropical and equatorial Indian and Pacific Ocean. If our explanation for the MIS 10 anomaly in terms of an insolation variability switch is correct, we might expect that a future Agulhas SSST anomaly event will further delay the onset of next glacial age. In fact, the insolation forcing conditions for the Holocene (the current interglacial) are very similar to those present during MIS 11 (the interglacial preceding MIS 10), as both periods are characterized by a low insolation variability for the Agulhas Current source area. Natural climatic variability will force the Earth system in the same direction as the anthropogenic global warming trend, and will thus lead to even warmer than expected global temperatures in the near future.
Resumo:
Neodymium (Nd) isotopes were measured on 181 samples of fossil fish teeth recovered from Oligocene to Miocene sections at Ocean Drilling Program Site 1090 (3700 m water depth) on Agulhas Ridge in the Atlantic sector of the Southern Ocean. A long-term decreasing trend toward less radiogenic Nd isotope compositions dominates the record. This trend is interrupted by shifts toward more radiogenic compositions near the early/late Oligocene boundary and the Oligocene/Miocene boundary. Overall, epsilon-Nd values at Agulhas Ridge are more radiogenic than at other Atlantic locations, and are similar to those at Indian Ocean locations. The pattern of variability is remarkably similar to Nd isotope results from Walvis Ridge (South Atlantic) and Ninetyeast Ridge (Indian Ocean). In contrast, Agulhas Ridge and Maud Rise Nd isotope records do not show similar patterns over this interval. Results from this study indicate that deep water in the Atlantic flowed predominantly from north to south during the Oligocene and Miocene, and that export of Northern Component Water (NCW) to the Southern Ocean increased in the late Oligocene. There is also evidence for efficient exchange of deep waters between the Atlantic sector of the Southern Ocean and the Indian Ocean, although the direction of deep water flow is not entirely clear from these data. The shifts to more radiogenic Nd isotopic compositions most likely represent increases in the flux of Pacific waters through Drake Passage, and the timing of these events reflect development of a mature Antarctic Circumpolar Current (ACC). The relative timing of increased NCW export and ACC maturation support hypotheses that link deep water formation in the North Atlantic to the opening of Drake Passage.
Resumo:
Anomalous concentrations of Ir have been found in upper Eocene sediments from Ocean Drilling Program (ODP) Hole 1090B. Clear and dark-colored spherules that are believed to be microtektites and clinopyroxene-bearing microkrystites, respectively, were found in the samples with highest Ir. The peak Ir concentration in Sample 177-1090B-30X-5,105-106 (954 pg/g) and the net Ir fluence (14 ng/cm**2) at this site are higher than at most other localities except for Caribbean site RC9-58. The Ir anomaly and impact debris are probably correlative with similar deposits found at ODP Site 689 on the Maude Rise and at other localities around the world.
Resumo:
Ocean Drilling Program (ODP) Site 1090, on the Agulhas Ridge in the South Atlantic sector of the Southern Ocean, is ideally located to capture changes in Southern Ocean circulation patterns. Using samples taken from cored sediments, we construct multiproxy records of productivity (biogenic barium (Baex), opal, and CaCO3 mass accumulation rates (MARs)), nutrient and organic carbon burial (reactive phosphorus (Pr) MARs), and redox conditions (U and Mn enrichments) to investigate hydrographic conditions associated with climatic shifts from the Oligocene through the early Miocene. Orbitally induced cyclicity in U and Mn enrichments (100 kyr) suggests shifts in deepwater characteristics. However, CaCO3 dissolution coincident with low U and Mn enrichments does not indicate low-oxygen, corrosive waters similar to modern conditions. These observations indicate that a well-developed "modern-type" Antarctic Circumpolar Current (ACC) did not yet exist over the period from 30 to 20 Ma, with two potential consequences: The Southern Ocean was not functioning as a silica trap, permitting a broader distribution of silica that may have facilitated organic carbon burial in the ocean in general, and the lack of a deeply mixing ACC may have facilitated organic carbon burial in the Southern Ocean. Both the relative (high opal MARs coincident with low CaCO3 MARs) and absolute (high Pr MARs) burial of organic carbon suggest a powerful mechanism for pCO2 drawdown.
Resumo:
The interaction between biogenic silica export and burial, paleoceanography, diatom species succession and mats formation was examined based on relative abundances data of Plio/Pleistocene diatoms from six cores recovered during ODP Leg 177 on a transect across the Antarctic Circumpolar Current (ACC) in the Atlantic sector of the Southern Ocean. Fragilariopsis kerguelensis, Actinocyclus ingens and species of the genus Thalassiothrix were the main contributors to the diatom assemblages. Three main steps marked the development of the silica system in the Southern Ocean: Step 1 (at ca. 2.77 Ma), establishment of increased biogenic silica burial in the Antarctic Circumpolar Current area, following the large-scale oceanic reorganization connected to the increased northern hemisphere glaciation; Step 2 (at ca. 1.93 Ma), the Antarctic Polar Front becomes the main biogenic silica sink, diatom mats are widespread, and are also found slightly to the north and south of the APF; Step 3 (at ca. 0.63 Ma), with the strong drop in abundance (and later extinction at 0.38 Ma) of A. ingens and the rise to dominance of F. kerguelensis, the system enters a glacial-interglacial mode, with diatom mats occurring during interglacials at the APF and in the Antarctic Zone, but disappearing north of it.