975 resultados para 16S RIBOSOMAL-RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3'5' direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2'-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5'-labeled ssRNA substrates were processed to final products of 8–12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5'-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key tenets of modern biology are the central place of protein in cell regulation and the flow of genetic information from DNA to RNA to protein. However, it is becoming increasingly apparent that genomes are much more complex than hitherto thought with remarkably complex regulatory systems. The notion that the fraction of the genome involved in coding protein is all that matters is increasingly being questioned as the roles of non-coding RNA (ncRNA) in cellular systems becomes recognised. The RNA world, including microRNA (miRNA), small inhibitory RNA (siRNA) and other RNA species, are now recognised as being crucial for the regulation of chromatin structure, gene expression, mRNA processing and splicing, mRNA stability and translational control. Furthermore such ncRNA systems may be perturbed in disease states and most notably in neoplasia, including in haematological malignancies. Here the burgeoning evidence for a role of miRNA in neoplasia is reviewed and the importance of understanding the RNA world emphasised. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human coronavirus 229E (HCoV-229E) replicase gene-encoded nonstructural protein 13 (nsp13) contains an N-terminal zinc-binding domain and a C-terminal superfamily 1 helicase domain. A histidine-tagged form of nsp13, which was expressed in insect cells and purified, is reported to unwind efficiently both partial-duplex RNA and DNA of up to several hundred base pairs. Characterization of the nsp13-associated nucleoside triphosphatase (NTPase) activities revealed that all natural ribonucleotides and nucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed most efficiently. Using the NTPase active site, HCoV-229E nsp13 also mediates RNA 5'-triphosphatase activity, which may be involved in the capping of viral RNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human coronavirus 229E replicase gene encodes a protein, p66HEL, that contains a putative zinc finger structure linked to a putative superfamily (SF) 1 helicase. A histidine-tagged form of this protein, HEL, was expressed using baculovirus vectors in insect cells. The purified recombinant protein had in vitro ATPase activity that was strongly stimulated by poly(U), poly(dT), poly(C), and poly(dA), but not by poly(G). The recombinant protein also had both RNA and DNA duplex-unwinding activities with 5'-to-3' polarity. The DNA helicase activity of the enzyme preferentially unwound 5'-oligopyrimidine-tailed, partial-duplex substrates and required a tail length of at least 10 nucleotides for effective unwinding. The combined data suggest that the coronaviral SF1 helicase functionally differs from the previously characterized RNA virus SF2 helicases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kipp F, Ziebuhr W, Becker K, Krimmer V, Höbeta N, Peters G, Von Eiff C. Institute of Medical Microbiology, Hospital and Clinics, University of Münster, Germany. A 45 year old man was admitted to hospital with a right sided facial paralysis and three month history of seizures. Computed tomography showed a left temporal mass including both intracerebral and extracerebral structures. Ten years earlier the patient had undergone a neurosurgical intervention in the same anatomical region to treat a subarachnoid haemorrhage. In tissue samples and pus obtained during neurosurgery, Staphylococcus aureus was detected by a 16S rRNA-directed in situ hybridisation technique. Following long term cultivation, small colony variants (SCV) of methicillin resistant S aureus were identified. The patient was treated successfully with a combination of vancomycin and rifampin followed by prolonged treatment with teicoplanin, with no sign of infection on follow up nine months after discharge. This is the first report in which S aureus SCV have been identified as causative organisms in a patient with brain abscess and in which in situ hybridisation has been used to detect S aureus in a clinical specimen containing SCV. Antimicrobial agents such as rifampin which have intracellular activity should be included in treatment of infections caused by S aureus SCV.