945 resultados para 133-817
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).
Resumo:
The oxygen isotopic composition of pore waters squeezed from sediments in Hole 817C co-varies with the oxygen isotopic composition of Globigerinoides ruber below 8 mbsf. The magnitude of the variation in the pore water d18O is approximately 30% of the variation in the foraminifers. Overall, the d18O of the pore waters increases down the core, a trend that is also present in the Cl- concentrations. The variations in the d18O of pore waters may be the result of either of two phenomena. First, these may reflect original variations in the waters, the magnitude of which has been subsequently reduced by process of diffusion. Second, these may reflect recrystallization of the precursor sediment and isotopic exchange between the fluids and the recrystallized sediment. At the moment data are not available to ascertain which process is responsible although the correlation between the Cl- and the d18O data suggests that these values reflect the original composition modified by diffusion.