994 resultados para 100 m water depth
Resumo:
Marine invertebrates with open circulatory system establish low and constant oxygen partial pressure (Po2) around their tissues. We hypothesized that as a first step towards maintenance of low haemolymph and tissue oxygenation, the Po2 in molluscan mantle cavity water should be lowered against normoxic (21 kPa) seawater Po2, but balanced high enough to meet the energetic requirements in a given species. We recorded Po2 in mantle cavity water of five molluscan species with different lifestyles, two pectinids (Aequipecten opercularis, Pecten maximus), two mud clams (Arctica islandica, Mya arenaria), and a limpet (Patella vulgata). All species maintain mantle cavity water oxygenation below normoxic Po2. Average mantle cavity water Po2 correlates positively with standard metabolic rate (SMR): highest in scallops and lowest in mud clams. Scallops show typical Po2 frequency distribution, with peaks between 3 and 10 kPa, whereas mud clams and limpets maintain mantle water Po2 mostly <5 kPa. Only A. islandica and P. vulgata display distinguishable temporal patterns in Po2 time series. Adjustment of mantle cavity Po2 to lower than ambient levels through controlled pumping prevents high oxygen gradients between bivalve tissues and surrounding fluid, limiting oxygen flux across the body surface. The patterns of Po2 in mantle cavity water correspond to molluscan ecotypes.
Resumo:
To reconstruct the deep-water circulation for the last 3.5 Ma from deep-sea sediments of the eastern equatorial Atlantic, sea floor morphology, sub-bottom reflectors and the echo character have been mapped on the basis of 3.5 kHz records and sediment cores. Physical properties of sediments and synthetic seismograms derived from them enable us to decipher reflector sequences in environments of pelagic, current-resuspended and turbidity sedimentation. The individual reflectors originate from carbonate dissolution, hiatus, coarse sand layers and interferences. Those which are related to carbonate dissolution and hiatus provide evidence of water-mass boundaries by their distribution. Five phases of different deep-water circulation can be seen in the record of th elast 3.5 Ma, and these are related to climate history: 1. Between 3.7 Ma and 2.2 Ma a strong deep-water circulation indicates a northward flow of bottom water below 4200 m (AABW = Antarctic-Bottom Water) and a southward flow of deep-water above 4200 m (NADW = North-Atlantic Deep Water). 2. Between 1.6 and 1.4 Ma a southward flow of bottom water below 4500 m and a diminished southward flow above 4500 m can be detected. This water-mass geometry can be interpreted by an expansion of the NADW-masses and a displacement of the AABW-masses during the same time. 3. Since 1.4 Ma a northward flow of a bottom-water current developed again. This current flow created a leeside sediment ridge in the southern part of the Kane Gap and furrows in the northern part of it. 4. Between 400,000 and 200,000 yrs B. P. the oceanic and atmospheric circulation increased. The strengthened oceanic circulation caused and increase in carbonate dissolution, which is documented by a traceable reflector from 2800 m to 4500 m water depth. At the same time an increase of the atmospheric circulation caused a drastic rise in the pelagic sediment accumulation (> 100 %) through an intensification of upwelling. This runs parallel with a higher oceanic productivity in the northern equatorial divergence zone and an enhanced supply of fluvial and probably eolian sediments from the Senegal and Guinea. 5. Before 10,000 yrs B. P. an erosive northward flowing bottom-water current prevailed below 4500 m water depth. After 10,000 yrs B.P. the bottom-water flow was sluggish and non erosive.
Resumo:
Samples of zooplankton were collected in the Barents Sea during cruise 11 of R/V Akademik Sergey Vavilov in September-October 1997. Three different sampling methods were used: 30 l bottle, Judey net, and BR net. More than 40 species of zooplankton were revealed. The greatest species diversity occurred in zones of junction of waters of different origin. Within the 100 m upper water layer zooplankton biomass was rather high: aver. 32 g/m**2. The highest biomass was observed in the northeastern part of the region under study and over the shelf of the Russkaya Gavan' Bay. The lowest biomass occurred in the southern part and in the region of the Gusinaya Banka. The average autumn value of zooplankton biomass in the 100 m upper layer (321 mg/m**3) slightly exceeded the multiannual average for the summer period (200 mg/m**3)
Resumo:
Foraminiferal abundance, 14C ventilation ages, and stable isotope ratios in cores from high deposition rate locations in the western subtropical North Atlantic are used to infer changes in ocean and climate during the Younger Dryas (YD) and Last Glacial Maximum (LGM). The d18O of the surface dwelling planktonic foram Globigerinoides ruber records the present-day decrease in surface temperature (SST) of ~4°C from Gulf Stream waters to the northeastern Bermuda Rise. If during the LGM the modern d18O/salinity relationship was maintained, this SST contrast was reduced to 2°C. With LGM to interglacial d18O changes of at least 2.2 per mil, SSTs in the western subtropical gyre may have been as much as 5°C colder. Above ~2.3 km, glacial d13C was higher than today, consistent with nutrient-depleted (younger) bottom waters, as identified previously. Below that, d13C decreased continually to -0.5 per mil, about equal to the lowest LGM d13C in the North Pacific Ocean. Seven pairs of benthic and planktonic foraminiferal 14C dates from cores >2.5 km deep differ by 1100 ± 340 years, with a maximum apparent ventilation age of ~1500 years at 4250 m and at ~4700 m. Apparent ventilation ages are presently unavailable for the LGM < 2.5 km because of problems with reworking on the continental slope when sea level was low. Because LGM d13C is about the same in the deep North Atlantic and the deep North Pacific, and because the oldest apparent ventilation ages in the LGM North Atlantic are the same as the North Pacific today, it is possible that the same water mass, probably of southern origin, flowed deep within each basin during the LGM. Very early in the YD, dated here at 11.25 ± 0.25 (n = 10) conventional 14C kyr BP (equal to 12.9 calendar kyr BP), apparent ventilation ages <2.3 km water depth were about the same as North Atlantic Deep Water today. Below ~2.3 km, four YD pairs average 1030 ± 400 years. The oldest apparent ventilation age for the YD is 1600 years at 4250 m. This strong contrast in ventilation, which indicates a front between water masses of very different origin, is similar to glacial profiles of nutrient-like proxies. This suggests that the LGM and YD modes of ocean circulation were the same.
Resumo:
Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.
Resumo:
A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km**2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux into the deep ocean. Chlorophyll a and primary productivity doubled after fertilization, and photosynthetic quantum yield (FV/FM) increased from 0.33 to >0.40. Silicic acid (<2 µmol/L) limited diatoms, which contributed <10% of phytoplankton biomass. Copepods exerted high grazing pressure. This is the first study of particle flux out of an artificially fertilized bloom with very low diatom biomass. Net community production (NCP) inside the patch, estimated from O2:Ar ratios, averaged 21 mmol POC/m**2/d, probably ±20%. 234Th profiles implied constant export of ~6.3 mmol POC/m**2/d in the patch, similar to unfertilized waters. The difference between NCP and 234Th-derived export partly accumulated in the mixed layer and was partly remineralized between the mixed layer and 100 m. Neutrally buoyant sediment traps at 200 and 450 m inside and outside the patch caught mostly <1.1 mmol POC/m**2/d, predominantly of fecal origin; flux did not increase upon fertilization. Our data thus indicate intense flux attenuation between 100 and 200 m, and probably between the mixed layer and 100 m. We attribute the lack of fertilization-induced export to silicon limitation of diatoms and reprocessing of sinking particles by detritus feeders. Our data are consistent with the view that nitrate-rich but silicate-deficient waters are not poised for enhanced particle export upon iron addition.
Resumo:
Vertical profiles of dissolved and particulate 230Th and 231Pa were obtained across the Antarctic Circumpolar Current (ACC) in the southern Atlantic. North of the Polar Front, dissolved and total 230Th increase with depth in conformity with published scavenging models. There is no depletion of 230Th or 231Pa in the water column south of the Polar Front, thought to be an area of enhanced biological productivity. 230Th concentrations increase three-fold to the Weddell Sea across the ACC. Dissolved and total 231Pa concentrations are relatively constant below 500 m depth at about 0.3 dpm m**-3, and change little with depth or latitude. The results from the Weddell Gyre are explained by a mixing-scavenging model that takes into account the input of lower Circumpolar Deep Water through upwelling, which is the main source of water in the Weddell Gyre and is enriched in 230Th but not in 231Pa. 230Th accumulates in the Weddell Gyre as a result of a reduction in the scavenging rate and by ingrowth from 234U. Ingrowth is more significant for 230Th than for 231Pa because the residence time of water in the gyre (about 35 years) is similar to the scavenging residence time of Th in the south Atlantic (29 years) but shorter than that of Pa (120 years). It is argued that changes in 230Th accumulation in the past may reflect changes in water residence time and in the formation rate of Weddell Sea Deep Water.
Resumo:
Interstitial waters recovered during Leg 38 show large changes in major ion composition and also in oxygen isotope composition. Increases in Ca[++] and Sr[++] and decreases in K[+], Mg[++], and O18/O16 are interpreted in terms of extensive diagenesis of terrigenous, volcanic, or basaltic igneous materials in the sediments and underlying basalts. Slight, but well-established increases in chlorinity with depth indicate that these postulated weathering reactions involve uptake of water to a measurable extent. Interstitial waters from sites drilled on the Inner Voring Plateau suggest the infusion of fresh waters by aquifers from the mainland of Norway.
Resumo:
During Termination 1, millennial-scale weakening events of the Atlantic meridional overturning circulation (AMOC) supposedly produced major changes in sea surface temperatures (SSTs) of the western South Atlantic, and in mean air temperatures (MATs) over southeastern South America. It has been suggested, for instance, that the Brazil Current (BC) would strengthen (weaken) and the North Brazil Current (NBC) would weaken (strengthen) during slowdown (speed-up) events of the AMOC. This anti-phase pattern was claimed to be a necessary response to the decreased North Atlantic heat piracy during periods of weak AMOC. However, the thermal evolution of the western South Atlantic and the adjacent continent is so far largely unknown. Here we address this issue, presenting high-temporal-resolution SST and MAT records from the BC and southeastern South America, respectively. We identify a warming in the western South Atlantic during Heinrich Stadial 1 (HS1), which is followed first by a drop and then by increasing temperatures during the Bølling-Allerød, in phase with an existing SST record from the NBC. Additionally, a similar SST evolution is shown by a southernmost eastern South Atlantic record, suggesting a South Atlantic-wide pattern in SST evolution during most of Termination 1. Over southeastern South America, our MAT record shows a two-step increase during Termination 1, synchronous with atmospheric CO2 rise (i.e., during the second half of HS1 and during the Younger Dryas), and lagging abrupt SST changes by several thousand years. This delay corroborates the notion that the long duration of HS1 was fundamental in driving the Earth out of the last glacial.
Resumo:
The Red Sea has a special place among the adjacent seas of the world. High evaporation, exclusion of its deep water from contact with the Indian Ocean proper and complete absence of continental drainage may result special conditions of the chemistry of the Red Sea. This paper aims to describe and explain the peculiarity of the hydrochemical situation. The influence of the topography, of the inflow and outflow through the straights of Bab el Mandeb, of the evaporation, of the stability of the water layers, and of the circulation will be studied. An attempt is made to estimate the apparent oxygen ultilisation in order to obtain an indication of the biological activity. A further attempt is made toward the quantitative estimation of the circulation of the nutrients and also to obtain some information about transport, dissolution, and precipitation of calcium carbonate. The basis of these investigations are mainly observations of R. V. "Meteor" during the International Indian Ocean Expedition 1964/65. The determination of dissolved oxygen, dissolved inorganic phosphate, nitrate, nitrite, ammonia, pH, alkalinity, silicate as well as salinity and temperature forms the necessary basis for such an investigation of the chemical conditions. In the first chapter the methods and some modifications for the determination of the chemical properties as applied during the I.I.O.E. cruise of R. V. "Meteor" are described. The new methods, as worked out and tested under sea going conditions during several years by the author, are described in more detail. These are the methods for nitrate, silicate, the automatic determination of dissolved inorganic phosphate and silicate, the automated determination of total phosphorus, the in situ recording of the oxygen tension, and the modification for the determination of ammonia, calcium, and dissolved oxygen. With these revised methods more than 18,000 determinations have been carried out during the Indian Ocean cruise. The complete working up of the chemical data of the Indian Ocean Expedition of R. V. "Meteor" is devided into four sections: Contributions 1) to the Chemistry of the Red Sea and the Inner Gulf of Aden, 2) to the Gulf of Aden and the Somali Coast Region, 3) to the Western Indian Coast Region, and 4) to the Persian Gulf and the Straits of Oman. This paper presents the first contribution. The special hydrographical conditions are discussed. It can be shown, that the increase of salinity in the surface waters from the south to the north of the Red Sea is only to about 30 % due to evaporation. The remaining increase is presumed to be due to the admixture of deep water to the surface layers. A special rate for the consumption of oxygen (0.114 ml/ l/a) is derived for the deep water of the Red Sea at 1500 m. Based upon the distribution of the dissolved oxygen along the axii of the Red Sea, a chematic model for the longitudinal circulation of the Red Sea is constructed. This model should be considered as a first approximation and may explain the special distribution of phosphate, nitrate, and silicate. Based upon the evaluation of the residence time of the deep water a dissolution rate for silicate is estimated as 1 mygat/a. It seems possible to calculate residence times of water masses outside the Red Sea from the silicate content. The increase of silicate and the consumption of oxygen lead to residence times of the water below the thermocine of 30 to 48 years. The distribution of oxygen in the Straits of Bab el Mandeb is described and discussed. The rate of consumption of the oxygen in the outflowing Red Sea water is estimated to 8.5 ml/ l/a. This rather high rate is explained with reference to the special conditions in the outflowing water. The Red Sea water is characterized initially by a relative high content of oxygen and a low content of nutrients. The increase in nutrients and the decrease in the oxygen content is a secondary process of the Red Sea water on its way to the Arabian Sea. Based upon the vertical distribution of the dissolved inorganic phosphate vertical exchange coefficients of 1 - 4 g/cm/sec and vertical current speeds of 10**-5 to 10**-4 cm/sec are calculated for some stations in the Red Sea. The distribution of phosphate, silicate, nitrate, nitrite and ammonia for the Red Sea and the Straits of Bab el Mandeb are discussed. The special circulation is evaluated and the balance of the nutrients is estimated by means of the brutto transport. The nutrient deficit is assumed to be balanced by sporadic inflow of intermediate water from the Gulf of Aden. An example for such an inflow has been observed and is demonstrated. The silicate-salinity relationships are a suitable way for characterizing water masses in the Red Sea. Equations for the calculation of the different components from the carbonate system, the ion activities, and the calcium carbonate saturation are evaluated. The influence of temperature and pressure is taken into account. The carbonate saturation is calculated from the determined concentrations of calcium, alkalinity, and the hydrogen ion activity. Saturation values of 320 % are found for the surface layer and of 100% ± 1 for the deep water. The extraordinary equilibrium conditions may explain the constant Ca/Cl ratio and also the sedimentation of undissolved carbonate skelecons even in greater depths. A main sedimentation rate of 2 * 10**-3cm/year is evaluated from a total sedimentation of 10 * 106 to/a of calcium carbonate in the Red Sea. The appendix contains those data, which are not published in the data volume of the I.I.O.E. expedition of R. V. "Meteor".
Resumo:
Actinium is one of the rarest naturally occurring elements on earth. We measured its longest-lived isotope 227Ac (half-life 21.77 yr) for the first time in the water column of the Southeast Pacific, the Central Arctic, the Antarctic Circumpolar Current (ACC) and the Weddell Gyre (WG). Besides the profile in the Southeast Pacific, which confirms earlier findings about the role of diapycnal mixing for 227Ac distribution, we found three other different types of vertical profiles. These profiles point to a prominent role of advection for 227Ac distribution, especially in the Southern Ocean. Depending on the type of profile found, 227Ac is proposed as a tracer for different oceanographic questions. In the Southern Ocean, up to 4.93±0.32 dpm/m**3 227Ac is found close to the sea floor, which is the highest concentration ever observed in the ocean. Close to the sea surface in the WG, 0.46±0.05 dpm/m**3 227Acex (227Ac in excess of its progenitor 231Pa) is detected. We use 227Acex there to determine the upwelling velocity in the Eastern WG to be about 55 m/yr. In the ACC, Upper and Lower Circumpolar Deep Water (UCDW and LCDW) are found to differ clearly in their 227Acex activity. High 227Acex activities are therefore a promising tracer for recent inputs of LCDW to the sea surface, which may help to understand the role of deep upwelling for iron inputs into Antarctic surface waters. The expected release of 227Ac is compared with 228Ra to make sure that the large near-surface excess in the water column of the Southern Ocean is not due to lateral inputs by isopycnal mixing. Data from the Central Arctic and from a transect across the ACC confirm that 228Ra and 227Acex differ strongly in their sources. The first measurements of 227Ac on suspended matter (less than 1.7% of total 227Ac close to the sea floor) indicate that the particle reactivity of 227Ac is negligible in the open ocean, in agreement with earlier findings [Y. Nozaki, Nature 310 (1984) 486-488]. Despite the extremely low concentrations of 227Ac, new measurement techniques [W.S. Moore, R. Arnold, J. Geophys. Res. 101 (1996) 1321-1329] point to a comfortable and comparably simple determination of 227Ac in the future. Finally, 227Acex may become a widely used deep-sea specific tracer.