981 resultados para (15)N resonance
Resumo:
http://www-civ.eng.cam.ac.uk/cjb/papers/cp88.pdf
Resumo:
We perform Raman scattering experiments on natural graphite in magnetic fields up to 45 T, observing a series of peaks due to interband electronic excitations over a much broader magnetic field range than previously reported. We also explore electron-phonon coupling in graphite via magnetophonon resonances. The Raman G peak shifts and splits as a function of magnetic field, due to the magnetically tuned coupling of the E 2g optical phonons with the K- and H-point inter-Landau-level excitations. The analysis of the observed anticrossing behavior allows us to determine the electron-phonon coupling for both K- and H-point carriers. In the highest field range (>35 T) the G peak narrows due to suppression of electron-phonon interaction. © 2012 American Physical Society.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.
Resumo:
The oxygen vacancy has been inferred to be the critical defect in HfO 2, responsible for charge trapping, gate threshold voltage instability, and Fermi level pinning for high work function gates, but it has never been conclusively identified. Here, the electron spin resonance g tensor parameters of the oxygen vacancy are calculated, using methods that do not over-estimate the delocalization of the defect wave function, to be g xx = 1.918, g yy = 1.926, g zz = 1.944, and are consistent with an observed spectrum. The defect undergoes a symmetry lowering polaron distortion to be localized mainly on a single adjacent Hf ion. © 2012 American Institute of Physics.
Resumo:
Psychophysical evidence suggests that sensations arising from our own movements are diminished when predicted by motor forward models and that these models may also encode the timing and intensity of movement. Here we report a functional magnetic resonance imaging study in which the effects on sensation of varying the occurrence, timing and force of movements were measured. We observed that tactile-related activity in a region of secondary somatosensory cortex is reduced when sensation is associated with movement and further that this reduction is maximal when movement and sensation occur synchronously. Motor force is not represented in the degree of attenuation but rather in the magnitude of this region's response. These findings provide neurophysiological correlates of previously-observed behavioural forward-model phenomena, and advocate the adopted approach for the study of clinical conditions in which forward-model deficits have been posited to play a crucial role.
Resumo:
Reward processing is linked to specific neuromodulatory systems with a dopaminergic contribution to reward learning and motivational drive being well established. Neuromodulatory influences on hedonic responses to actual receipt of reward, or punishment, referred to as experienced utility are less well characterized, although a link to the endogenous opioid system is suggested. Here, in a combined functional magnetic resonance imaging-psychopharmacological investigation, we used naloxone to block central opioid function while subjects performed a gambling task associated with rewards and losses of different magnitudes, in which the mean expected value was always zero. A graded influence of naloxone on reward outcome was evident in an attenuation of pleasure ratings for larger reward outcomes, an effect mirrored in attenuation of brain activity to increasing reward magnitude in rostral anterior cingulate cortex. A more striking effect was seen for losses such that under naloxone all levels of negative outcome were rated as more unpleasant. This hedonic effect was associated with enhanced activity in anterior insula and caudal anterior cingulate cortex, areas implicated in aversive processing. Our data indicate that a central opioid system contributes to both reward and loss processing in humans and directly modulates the hedonic experience of outcomes.
Resumo:
Decision making in an uncertain environment poses a conflict between the opposing demands of gathering and exploiting information. In a classic illustration of this 'exploration-exploitation' dilemma, a gambler choosing between multiple slot machines balances the desire to select what seems, on the basis of accumulated experience, the richest option, against the desire to choose a less familiar option that might turn out more advantageous (and thereby provide information for improving future decisions). Far from representing idle curiosity, such exploration is often critical for organisms to discover how best to harvest resources such as food and water. In appetitive choice, substantial experimental evidence, underpinned by computational reinforcement learning (RL) theory, indicates that a dopaminergic, striatal and medial prefrontal network mediates learning to exploit. In contrast, although exploration has been well studied from both theoretical and ethological perspectives, its neural substrates are much less clear. Here we show, in a gambling task, that human subjects' choices can be characterized by a computationally well-regarded strategy for addressing the explore/exploit dilemma. Furthermore, using this characterization to classify decisions as exploratory or exploitative, we employ functional magnetic resonance imaging to show that the frontopolar cortex and intraparietal sulcus are preferentially active during exploratory decisions. In contrast, regions of striatum and ventromedial prefrontal cortex exhibit activity characteristic of an involvement in value-based exploitative decision making. The results suggest a model of action selection under uncertainty that involves switching between exploratory and exploitative behavioural modes, and provide a computationally precise characterization of the contribution of key decision-related brain systems to each of these functions.
Resumo:
A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with 235U is necessary, and the 235U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO
Resumo:
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data. © 2013 American Physical Society.
Resumo:
Fano resonances and their strong doping dependence are observed in Raman scattering of single-layer graphene (SLG). As the Fermi level is varied by a back-gate bias, the Raman G band of SLG exhibits an asymmetric line shape near the charge neutrality point as a manifestation of a Fano resonance, whereas the line shape is symmetric when the graphene sample is electron or hole doped. However, the G band of bilayer graphene (BLG) does not exhibit any Fano resonance regardless of doping. The observed Fano resonance can be interpreted as interferences between the phonon and excitonic many-body spectra in SLG. The absence of a Fano resonance in the Raman G band of BLG can be explained in the same framework since excitonic interactions are not expected in BLG. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The monovalent potassium doped manganites Pr0.6Sr 0.4-xKxMnO3 (x = 0.05-0.2) are characterized using the complementary magnetic susceptibility and electron resonance methods. In paramagnetic phase the temperature variations of the inverse magnetic susceptibility and the inverse intensity of resonance signal obey the Curie-Weiss law. A similarity in temperature variation of resonance signal width and the adiabatic polaron conductivity points to the polaron mechanism controlling the resonance linewidth. The low temperature limit of the pure paramagnetic phase is determined from the electron resonance spectra revealing the mixed phase spread down to the Curie temperature. © 2013 Elsevier B.V. All rights reserved.
Resumo:
IMPORTANCE: Forward models predict the sensory consequences of planned actions and permit discrimination of self- and non-self-elicited sensation; their impairment in schizophrenia is implied by an abnormality in behavioral force-matching and the flawed agency judgments characteristic of positive symptoms, including auditory hallucinations and delusions of control. OBJECTIVE: To assess attenuation of sensory processing by self-action in individuals with schizophrenia and its relation to current symptom severity. DESIGN, SETTING, AND PARTICIPANTS: Functional magnetic resonance imaging data were acquired while medicated individuals with schizophrenia (n = 19) and matched controls (n = 19) performed a factorially designed sensorimotor task in which the occurrence and relative timing of action and sensation were manipulated. The study took place at the neuroimaging research unit at the Institute of Cognitive Neuroscience, University College London, and the Maudsley Hospital. RESULTS: In controls, a region of secondary somatosensory cortex exhibited attenuated activation when sensation and action were synchronous compared with when the former occurred after an unexpected delay or alone. By contrast, reduced attenuation was observed in the schizophrenia group, suggesting that these individuals were unable to predict the sensory consequences of their own actions. Furthermore, failure to attenuate secondary somatosensory cortex processing was predicted by current hallucinatory severity. CONCLUSIONS AND RELEVANCE: Although comparably reduced attenuation has been reported in the verbal domain, this work implies that a more general physiologic deficit underlies positive symptoms of schizophrenia.