965 resultados para z-scan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to compare inter-observer agreement of Stratus™ OCT versus Spectralis™ OCT image grading in patients with neovascular age-related macular degeneration (AMD). Thirty eyes with neovascular AMD were examined with Stratus™ OCT and Spectralis™ OCT. Four different scan protocols were used for imaging. Three observers graded the images for the presence of various pathologies. Inter-observer agreement between OCT models was assessed by calculating intra-class correlation coefficients (ICC). In Stratus™ OCT highest interobserver agreement was found for subretinal fluid (ICC: 0.79), and in Spectralis™ OCT for intraretinal cysts (IRC) (ICC: 0.93). Spectralis™ OCT showed superior interobserver agreement for IRC and epiretinal membranes (ERM) (ICC(Stratus™): for IRC 0.61; for ERM 0.56; ICC(Spectralis™): for IRC 0.93; for ERM 0.84). Increased image resolution of Spectralis™ OCT did improve the inter-observer agreement for grading intraretinal cysts and epiretinal membranes but not for other retinal changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To define the appropriate scan time for fluorine-18-labeled dihydroxyphenylalanine (F-18 DOPA) PET in oncological imaging of pheochromocytomas and paragangliomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lifshitz spacetimes with the critical exponent z = 2 can be obtained by the dimensional reduction of Schrödinger spacetimes with the critical exponent z = 0. The latter spacetimes are asymptotically AdS solutions of AdS gravity coupled to an axion–dilaton system and can be uplifted to solutions of type IIB supergravity. This basic observation is used to perform holographic renormalization for four-dimensional asymptotically z = 2 locally Lifshitz spacetimes by the Scherk–Schwarz dimensional reduction of the corresponding problem of holographic renormalization for five-dimensional asymptotically locally AdS spacetimes coupled to an axion–dilaton system. We can thus define and characterize a four-dimensional asymptotically locally z = 2 Lifshitz spacetime in terms of five-dimensional AdS boundary data. In this setup the four-dimensional structure of the Fefferman–Graham expansion and the structure of the counterterm action, including the scale anomaly, will be discussed. We find that for asymptotically locally z = 2 Lifshitz spacetimes obtained in this way, there are two anomalies each with their own associated nonzero central charge. Both anomalies follow from the Scherk–Schwarz dimensional reduction of the five-dimensional conformal anomaly of AdS gravity coupled to an axion–dilaton system. Together, they make up an action that is of the Horava–Lifshitz type with a nonzero potential term for z = 2 conformal gravity.