983 resultados para yard drying
Resumo:
Microcapsules containing lactoferrin were produced by spray drying using dextrin:octenylsuccinate starch, as wall materials. Porosity characteristics of spray-dried microcapsules were investigated by mercury intrusion porosimetry and nitrogen adsorption. The outer and inner structures of microcapsules were studied by Scanning Electron Microscopy and sizes were determined by Laser Diffraction. Results indicate that all microcapsules presents adsorption isotherm of type II and that micropores on the microcapsules surface will be very few or none. Our results show that microstructure, surface area and size of microcapsules are affected by dextrin: octenylsuccinate starch proportion. Pore characteristics for various microcapsules are found to be different.
Resumo:
In this study, we evaluated the yield and chemical composition of volatile compounds obtained from fresh, dried at 30 and 40 ºC respectively of Piper piscatorum, employing the technique of hydrodistillation. The volatile were chemically characterized by GC-MS and GC-FID. The main volatile compounds were selin-11-en-4-a-ol (57,63 ± 3,07%; 53,95 ± 1,56% and 56,20 ± 0,43%) and benzyl benzoate (15,40 ± 0,36%; 16,32 ± 0,85% and 15,04 ± 0,24%).The drying of the raw material reduced yield of volatile compounds, changing their chemical compositions.
Resumo:
Inclusion compound of rhodium(II) citrate with β-cyclodextrin in a 1:1 molar ratio was prepared using freeze-drying method. X-ray diffactometry, thermal analysis (TG/DTG/DSC), infrared and ¹H-NMR with ¹H spin lattice relaxation (¹H T1) measurements and 13C techniques were used to characterize the system prepared. The results indicated the formation of inclusion or association compounds between rhodium(II) citrate and β-cyclodextrin.
Resumo:
The effect of moisture content in the steam treatment and enzymatic hydrolysis of sugarcane bagasse was evaluated. Steam treatment was perfomed at 195-210 ºC for 4-8 min using cane bagasse with moisture contents in the range 16-100 wt% (dry basis). Increased moisture contents not only had a positive influence in recovery of main cane biomass components but also resulted in better substrates for enzymatic hydrolysis. As a result, drying is not required for optimal pretreatment and enzymatic hydrolysis of sugarcane bagasse, which can be processed into second generation ethanol immediately after crushing and hot water washing.
Resumo:
A simple analytical method for extraction and quantification of lutein colorant added to yogurt was developed and validated. The method allowed complete extraction of carotenoids using tetrahydrofuran in vortex, followed by centrifugation, partition to diethyl ether/petroleum ether, and drying. The carotenoids dissolved in ethanol were quantified by UV-Vis spectrophotometry. This method showed linearity in the range tested (1.41-13.42 µg g-1), limits of detection and quantification of 0.42 and 1.28 µg g-1, respectively, low relative standard deviation (3.4%) and recovery ranging from 95 to 103%. The method proved reliable for quantification of lutein added to yogurt.
Resumo:
We evaluated the effect of thermal drying (60 to 75 ºC and times from 0 to 12.58 h) and alkaline treatment (Ca(OH)2 and CaO at doses from 8 to 10%.) on the microbiological and chemical characteristics of biosolids from the Cañaveralejo WWTP. The results showed that in thermal drying all temperatures studied were sufficient to achieve the sanitation of biosolids. In the alkaline treatment the two types of lime showed the total elimination of fecal coliforms, E. coli and helminth eggs, however, the process of alkalization of biosolids had significant influences on organic carbon and calcium.
Resumo:
Commercial Brazilian regular and decaffeinated instant coffees (33 brands) were studied. The levels ranged from 0.47 to 2.15 g 100 g-1 for trigonelline, 0.38 to 2.66 g 100 g-1 for 5-caffeoylquinic acid (5-CQA), 0.24 to 4.08 g 100 g-1 for caffeine, and 0.253 to 0.476 (420 nm) for melanoidins. Variations in bioactive compound levels among batches were observed. There was no relationship between the drying process and the composition of the products. In general, Gourmet and decaffeinated coffees had higher trigonelline and 5-CQA but lower caffeine and melanoidin content than regular products.
Resumo:
Interaction and physicochemical characterization of dispersions of naproxen in calcium carbonate after freeze-drying the wet-state equilibrated mixture have been investigated by analytical methods. The FT-IR study revealed the acid-base reaction between naproxen and calcium carbonate. The DSC study indicated physical interaction and significantly diminished crystallinity of naproxen in the formulation containing higher quantities of calcium carbonate. Furthermore, the SEM study showed the reduced particle size and loss of crystalline morphology in the same sample. Drug release increased with the increase of calcium carbonate in the formulations. Formulation of naproxen with calcium carbonate in 1:2 ratio allowed its dissolution to the greatest extent (94.96%) while other compositions, 1:0.5 and 1:1, showed 80.86% and 78.30% release, respectively.
Resumo:
Lipase from Burkholderia cepacia was immobilized in a silica matrix and dried in high pressure carbon dioxide media (aerogel). The protic ionic liquid (PIL) was used in the immobilization process by encapsulation. The objective of this work was to evaluate the influence of the drying technique using supercritical carbon dioxide in biocatalysts obtained through the sol-gel technique by evaluating temperature and pressure and, after selecting the best drying conditions, to investigate the application of the technique for the biocatalyst using ionic liquid as an additive in the immobilization process. The results for immobilized biocatalysts showed that the best conditions of pressure and temperature were 100 bar and 25 ºC, respectively, giving a total activity recovery yield of 37.27% without PIL (EN) and 44.23% with PIL (ENLI). The operational stability of the biocatalysts showed a half-life of 11.4 h for ENLI and 6 h for EN. Therefore, solvent extraction using supercritical CO2, besides shortening drying time, offers little resistance to the immobilization of lipases, since their macropores provide ample room for their molecules. The use of the ionic liquid as an additive in the process studied for the immobilization of enzymes produced attractive yields for immobilization and therefore has potential for industrial applications in the hydrolysis of vegetable oils.
Resumo:
Iron(III) acetate was synthesized by the reflux method using iron enriched in the 57Fe isotope and the compound processed by freeze-drying. The as-synthesized and freeze-dried acetates were characterized regarding their structural, thermal, vibrational and hyperfine properties. Similar diffractometric and spectroscopic results were found for both materials and also for an industrial acetate made with natural iron. However, the microstructures differed: the as-synthesized compound showed flake morphology with micrometric dimensions, whereas the freeze-dried showed flake morphology with sub-micrometric dimensions. The activation energies for thermal decomposition, calculated from the exothermic events occurring in differential scanning calorimetry measurements, were 100.9 kJ/mol (as-synthesized) and 114.7 kJ/mol (freeze-dried).
Resumo:
Samples of whole fluid pasteurized, UHT and powdered milk were analyzed for the presence of organophosphorus pesticide residues (OPR) using the QuEChERS method with detection by GC-FPD and confirmation by UPLC-MS/MS. A total of 23% of fluid milk samples and 27% of powdered milk samples contained at least one organophosphorus residue. The OPR found in the samples showed these can reach the milk and remain even after pasteurization, sterilization and drying processes. Some domestic sanitary residues were also present in the powdered milk samples. These residues have no LMR in Brazilian food legislation and are therefore not taken into account in food intake evaluations. There was an unidentified chromatographic peak in 30% of all the liquid and powdered milk samples, indicating the presence of some other contaminant.
Resumo:
Materials based on tungstophosphoric acid (TPA) immobilized on NH4ZSM5 zeolite were prepared by wet impregnation of the zeolite matrix with TPA aqueous solutions. Their concentration was varied in order to obtain TPA contents of 5%, 10%, 20%, and 30% w/w in the solid. The materials were characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, 31P MAS-NMR, TGA-DSC, DRS-UV-Vis, and the acidic behavior was studied by potentiometric titration with n-butylamine. The BET surface area (SBET) decreased when the TPA content was raised as a result of zeolite pore blocking. The X-ray diffraction patterns of the solids modified with TPA only presented the characteristic peaks of NH4ZSM5 zeolites, and an additional set of peaks assigned to the presence of (NH4)3PW12O40. According to the Fourier transform infrared and 31P magic angle spinning-nuclear magnetic resonance spectra, the main species present in the samples was the [PW12O40]3- anion, which was partially transformed into the [P2W21O71]6- anion during the synthesis and drying steps. The thermal stability of the NH4ZSM5TPA materials was similar to that of their parent zeolites. Moreover, the samples with the highest TPA content exhibited band gap energy values similar to those reported for TiO2. The immobilization of TPA on NH4ZSM5 zeolite allowed the obtention of catalysts with high photocatalytic activity in the degradation of methyl orange dye (MO) in water, at 25 ºC. These can be reused at least three times without any significant decrease in degree of degradation.
Resumo:
Various strength properties of paper are measured to tell how well it resists breaks in a paper machine or in printing presses. The most often measured properties are dry tensile strength and dry tear strength. However, in many situations where paper breaks, it is not dry. For example, in web breaks after the wet pressing the dry matter content can be around 45%. Thus, wet-web strength is often a more critical paper property than dry strength. Both wet and dry strength properties of the samples were measured with a L&W tensile tester. Originally this device was not designed for the measurement of the wet web tensile strength, thus a new procedure to handle the wet samples was developed. The method was tested with Pine Kraft (never dried). The effect of different strength additives on the wet-web and dry paper tensile strength was studied. The polymers used in this experiment were aqueous solution of a cationic polyamidoamine-epichlorohydrin resin (PAE), cationic hydrophilised polyisocyanate and cationic polyvinylamine (PVAm). From all three used chemicals only Cationic PAE considerably increased the wet web strength. However it was noticed that at constant solids content all chemicals decreased the wet web tensile strength. So, since all chemicals enhanced solid content it can be concluded that they work as drainage aids, not as wet web strength additives. From all chemicals only PVAm increased the dry strength and two other chemicals even decreased the strength. As chemicals were used in strong diluted forms and were injected into the pulp slurry, not on the surface of the papersheets, changes in samples densities did not happen. Also it has to be noted that all these chemicals are mainly used to improve the wet strength after the drying of the web.
Natural colonization of leaves of 'Pêra' sweet orange and related varieties by Guignardia citricarpa
Resumo:
The purpose of this research was to evaluate the differences in the colonization and production of structures in the leaves of 'Pêra' sweet orange (Citrus sinensis) clones and related varieties by Guignardia citricarpa. The natural colonization and the production of reproductive structures in the leaves and in vitro of ten 'Pêra' sweet orange was quantified in the following clones: Bianchi, Dibbern C.V., EEL, IAC 2000, Olímpia 15161, Premunizada 1212, Premunizada 1743/82, R. Gullo 1569/244, R. Gullo 1570/246 and Vimusa; and in five related varieties: Redonda C.N, Ovale 968, Ovale San Lio 969, Lamb Summer and Corsa Tardia. The quantification of the colonization density of G. citricarpa in the leaves was obtained through isolation. Incidence and colonization density (cm²) were calculated for each clone. The production of reproductive structures was accomplished through the moistening and drying process of the leaves. The incidence (percentage of affected leaves) and the leaf surface percentage occupied by the reproductive fungus structures were quantified. The in vitro production of reproductive structures was accomplished in water-agar medium. The number of immature and total reproductive fungus structures (cm²), and the percentage of picnidia with liberation of spores were quantified. Significant differences were not observed among clones related to the colonization of the leaves. But there were differences in the induction experiments, i.e., in the leaf surface percentage occupied by the reproductive fungus structures and the in vitro production of reprodutive fungus structures.
Resumo:
A model to estimate damage caused by gray leaf spot of corn (Cercospora zea-maydis) was developed from experimental field data gathered during the summer seasons of 2000/01 and during the second crop season [January-seedtime] of 2001, in the southwest of Goiás state. Three corn hybrids were grown over two seasons and on two sites, resulting in 12 experimental plots. A disease intensity gradient (lesions per leaf) was generated through application, three times over the season, of five different doses of the fungicide propiconazol. From tasseling onward, disease intensity on the ear leaf (El), and El - 1, El - 2, El + 1, and El + 2, was evaluated weekly. A manual harvest at the physiological ripening stage was followed by grain drying and cleaning. Finally, grain yield in kg.ha-1 was estimated. Regression analysis, performed between grain yield and all combinations of the number of lesions on each leaf type, generated thirty linear equations representing the damage function. To estimate losses caused by different disease intensities at different corn growth stages, these models should first be validated. Damage coefficients may be used in determining the economic damage threshold.