969 resultados para unrestricted grazing
Resumo:
The high-altitude lake Tso Moriri (32°55'46'' N, 78°19'24'' E; 4522 m a.s.l.) is situated at the margin of the ISM and westerly influences in the Trans-Himalayan region of Ladakh. Human settlements are rare and domestic and wild animals are concentrating at the alpine meadows. A set of modern surface samples and fossil pollen from deep-water TMD core was evaluated with a focus on indicator types revealing human impact, grazing activities and lake system development during the last ca. 12 cal ka BP. Furthermore, the non-pollen palynomorph (NPP) record, comprising remains of limnic algae and invertebrates as well as fungal spores and charred plant tissue fragments, were examined in order to attest palaeolimnic phases and human impact, respectively. Changes in the early and middle Holocene limnic environment are mainly influenced by regional climatic conditions and glacier-fed meltwater flow in the catchment area. The NPP record indicates low lake productivity with high influx of freshwater between ca. 11.5 and 4.5 cal ka BP which is in agreement with the regional monsoon dynamics and published climate reconstructions. Geomorphologic observations suggest that during this period of enhanced precipitation the lake had a regular outflow and contributed large amounts of water to the Sutlej River, the lower reaches of which were integral part of the Indus Civilization area. The inferred minimum fresh water input and maximum lake productivity between ca. 4.5-1.8 cal ka BP coincides with the reconstruction of greatest aridity and glaciation in the Korzong valley resulting in significantly reduced or even ceased outflow. We suggest that lowered lake levels and river discharge on a larger regional scale may have caused irrigation problems and harvest losses in the Indus valley and lowlands occupied by sedentary agricultural communities. This scenario, in turn, supports the theory that, Mature Harappan urbanism (ca. 4.5-3.9 cal ka BP) emerged in order to facilitate storage, protection, administration, and redistribution of crop yields and secondly, the eventual collapse of the Harappan Culture (ca. 3.5-3 cal ka BP) was promoted by prolonged aridity. There is no clear evidence for human impact around Tso Moriri prior to ca. 3.7 cal ka BP, with a more distinct record since ca. 2.7 cal ka BP. This suggests that the sedimentary record from Tso Moriri primarily archives the regional climate history.
Resumo:
The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and -0.77 µmol/m**2/s in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.
Resumo:
Pteropods are important organisms in high-latitude ecosystems, and they are expected to severely suffer from climate change in the near future. In this study, sedimentation patterns of two pteropod species, the polar Limacina helicina and the subarctic boreal L. retroversa, are presented. Time series data received by moored sediment traps at the Long-Term Ecological Research (LTER) Observatory HAUSGARTEN in eastern Fram Strait were analyzed during the years 2008 to 2012. Results were derived from four different deployment depths (~200, 1,250, 2,400, and 2,550 m) at two different sites (79° N, 04°20' E; 79°43' N, 04°30' E). A species-specific sedimentation pattern was present at all depths and at both sites showing maximal flux rates during September/October for L. helicina and in November/December for L. retroversa. The polar L. helicina was outnumbered by L. retroversa (55-99 %) at both positions and at all depths supporting the recently observed trend toward the dominance of the subarctic boreal species. The largest decrease in pteropod abundance occurred within the mesopelagic zone (~200-1,250 m), indicating loss via microbial degradation and grazing. Pteropod carbonate (aragonite) amounted up to ~75 % of the total carbonate flux at 200 m and 2-13 % of the aragonite found in the shallow traps arrived at the deep sediment traps (~160 m above the seafloor), revealing the significance of pteropods in carbonate export at Fram Strait. Our results emphasize the relevance and the need for continuation of long-term studies to detect and trace changes in pteropod abundances and community composition and thus in the vertical transport of aragonite.
Resumo:
We investigated the impacts of predicted ocean acidification and future warming on the quantity and nutritional quality of a natural phytoplankton autumn bloom in a mesocosm experiment. Since the effects of CO2-enrichment and temperature have usually been studied independently, we were also interested in the interactive effects of both aspects of climate change. Therefore, we used a factorial design with two temperature and two acidification levels in a mesocosm experiment with a Baltic Sea phytoplankton community. Our results show a significant time-dependent influence of warming on phytoplankton carbon, chlorophyll a as well as POC. Phytoplankton carbon for instance decreased by more than a half with increasing temperature at bloom time. Additionally, elemental carbon to phosphorus ratios (C:P) increased significantly by approximately 5-8 % under warming. Impacts of CO2 or synergetic effects of warming and acidification could not be detected. We suggest that temperature-induced stronger grazing pressure was responsible for the significant decline in phytoplankton biomass. Our results suggest that biological effects of warming on Baltic Sea phytoplankton are considerable and will likely have fundamental consequences for the trophic transfer in the pelagic food-web.