906 resultados para transit times
Resumo:
Effective static analyses have been proposed which allow inferring functions which bound the number of resolutions or reductions. These have the advantage of being independent from the platform on which the programs are executed and such bounds have been shown useful in a number of applications, such as granularity control in parallel execution. On the other hand, in certain distributed computation scenarios where different platforms come into play, with each platform having different capabilities, it is more interesting to express costs in metrics that include the characteristics of the platform. In particular, it is specially interesting to be able to infer upper and lower bounds on actual execution time. With this objective in mind, we propose a method which allows inferring upper and lower bounds on the execution times of procedures of a program in a given execution platform. The approach combines compile-time cost bounds analysis with a one-time profiling of the platform in order to determine the values of certain constants for that platform. These constants calibrate a cost model which from then on is able to compute statically time bound functions for procedures and to predict with a significant degree of accuracy the execution times of such procedures in the given platform. The approach has been implemented and integrated in the CiaoPP system.
Resumo:
The aim of this paper is to propose a model for the design of a robust rapid transit network. In this paper, a network is said to be robust when the effect of disruption on total trip coverage is minimized. The proposed model is constrained by three different kinds of flow conditions. These constraints will yield a network that provides several alternative routes for given origin–destination pairs, therefore increasing robustness. The paper includes computational experiments which show how the introduction of robustness influences network design
Resumo:
The aim of this paper is to propose an integrated planning model to adequate the offered capacity and system frequencies to attend the increased passenger demand and traffic congestion around urban and suburban areas. The railway capacity is studied in line planning, however, these planned frequencies were obtained without accounting for rolling stock flows through the rapid transit network. In order to provide the problem more freedom to decide rolling stock flows and therefore better adjusting these flows to passenger demand, a new integrated model is proposed, where frequencies are readjusted. Then, the railway timetable and rolling stock assignment are also calculated, where shunting operations are taken into account. These operations may sometimes malfunction, causing localized incidents that could propagate throughout the entire network due to cascading effects. This type of operations will be penalized with the goal of selectively avoiding them and ameliorating their high malfunction probabilities. Swapping operations will also be ensured using homogeneous rolling stock material and ensuring parkings in strategic stations. We illustrate our model using computational experiments drawn from RENFE (the main Spanish operator of suburban passenger trains) in Madrid, Spain. The results show that through this integrated approach a greater robustness degree can be obtained
Resumo:
The study of temperature gradients in cold stores and containers is a critical issue in the food industry for the quality assurance of products during transport, as well as forminimizing losses. The objective of this work is to develop a new methodology of data analysis based on phase space graphs of temperature and enthalpy, collected by means of multidistributed, low cost and autonomous wireless sensors and loggers. A transoceanic refrigerated transport of lemons in a reefer container ship from Montevideo (Uruguay) to Cartagena (Spain) was monitored with a network of 39 semi-passive TurboTag RFID loggers and 13 i-button loggers. Transport included intermodal transit from transoceanic to short shipping vessels and a truck trip. Data analysis is carried out using qualitative phase diagrams computed on the basis of Takens?Ruelle reconstruction of attractors. Fruit stress is quantified in terms of the phase diagram area which characterizes the cyclic behaviour of temperature. Areas within the enthalpy phase diagram computed for the short sea shipping transport were 5 times higher than those computed for the long sea shipping, with coefficients of variation above 100% for both periods. This new methodology for data analysis highlights the significant heterogeneity of thermohygrometric conditions at different locations in the container.
Resumo:
The peak temperature in the corona of plasma ejected by a laser-irradiated slab is discussed in terms of a one-electron-temperature model. Both heat-flux saturation and pulse rise-time effects are considered;the intensity in the rising half of the pulse is approximated by a linear function of time, I(t) = Iot/r. The temperature is found to be proportional to (IQX2)273 and a function of I0X4/r. Above a certain value of I0X4/T, the plasma presents two characteristic temperatures (at saturation and at the critical surface) which can be identified with experimentally observed cold- and hot-electron temperatures. The results are compared with extensive experimental data available for both nd and CO2 lasers, I0(W'cnf2) X2 (/um) starting around 1012. The agreement is good if substantial flux inhibition is assumed (flux-limit factor f = 0.03), and fails for I0X2 above 1O1S. Results for both ablation pressure and mass ablation rate are also given.
Resumo:
Optical instabilities in the output light from a bistable optical device (BOD) with a delayed feedback was predicted by Ikeda [1]. Gibbs et al. [2] gave the first experimental verification of this type of instabilities. From that time several groups have studied the instabilities of the BOD for different relations between the delay time tR and the time constant ح of the system. In a previous paper [3] an empirical and analytical study of instabilities in hybrid BOD was reported by us. The employed set up is shown in Fig. 1.
Resumo:
Light rail systems have proliferated in Spain in the last decade, following a tendency that is common not only in other European countries but also in other parts of the world. This paper reviews the benefits of light rail systems, both related to environmental issues and mobility issues. It analyses the evolution of light rail projects in Spain and shows that light rail systems in this country have evolved towards an extensive use of public-private partnerships. The analysis of the Spanish projects, however, does not contribute any conclusive evidence about whether public-private partnerships have been more efficient than publicly owned enterprises in building and operating light rail systems.
Resumo:
After a brief review of some old concepts getting application when new technologies have been developed, this paper offers a short review to some optical bistability concepts. It is shown how different concepts can be employed today in many fields, after being considered as inconvenient when they were found. Some practical applications and some proposals will be reported.
Resumo:
Tít. tomado del comienzo del texto
Resumo:
Effects of considering the particle comminution rate -kc- in addition to particle rumen outflow -kp- and the ruminal microbial contamination on estimates of by-pass and intestinal digestibility of DM, organic matter and crude protein were examined in perennial ryegrass and oat hays. By-pass kc-kp-based values of amino acids were also determined. This study was performed using particle transit, in situ and 15N techniques on three rumen and duodenum-cannulated wethers. The above estimates were determined using composite samples from rumen-incubated residues representative of feed by-pass. Considering the comminution rate, kc, modified the contribution of the incubated residues to these samples in both hays and revealed a higher microbial contamination, consistently in oat hay and only as a tendency for crude protein in ryegrass hay. Not considering kc or rumen microbial contamination overvalued by-pass and intestinal digestibility in both hays. Therefore, non-microbial-corrected kp-based values of intestinal digested crude protein were overestimated as compared with corrected and kc-kp-based values in ryegrass hay -17.4 vs 4.40%- and in oat hay -5.73 vs 0.19%-. Both factors should be considered to obtain accurate in situ estimates in grasses, as the protein value of grasses is very conditioned by the microbial synthesis derived from their ruminal fermentation. Consistent overvaluations of amino acid by-pass due to not correcting microbial contamination were detected in both hays, with large variable errors among amino acids. A similar degradation pattern of amino acids was recorded in both hays. Cysteine, methionine, leucine and valine were the most degradation-resistant amino acids.
Resumo:
Crida publicada el 22 de noviembre de 1679
Resumo:
We study the evolution of a finite size population formed by mutationally isolated lineages of error-prone replicators in a two-peak fitness landscape. Computer simulations are performed to gain a stochastic description of the system dynamics. More specifically, for different population sizes, we compute the probability of each lineage being selected in terms of their mutation rates and the amplification factors of the fittest phenotypes. We interpret the results as the compromise between the characteristic time a lineage takes to reach its fittest phenotype by crossing the neutral valley and the selective value of the sequences that form the lineages. A main conclusion is drawn: for finite population sizes, the survival probability of the lineage that arrives first to the fittest phenotype rises significantly
Resumo:
El objetivo de este Proyecto Fin de Grado es el diseño de megafonía y PAGA (Public Address /General Alarm) de la estación de tren Waipahu Transit Center en la ciudad de Honolulú, Hawái. Esta estación forma parte de una nueva línea de tren que está en proceso de construcción actualmente llamada Honolulu Rail Transit. Inicialmente la línea de tren constará de 21 estaciones, en las que prácticamente todas están diseñadas como pasos elevados usando como referencia las autopistas que cruzan la isla. Se tiene prevista su fecha de finalización en el año 2019, aunque las primeras estaciones se inaugurarán en 2017. Se trata en primer lugar un estudio acústico del recinto a sonorizar, eligiendo los equipos necesarios: conmutadores, altavoces, amplificadores, procesador, equipo de control y micrófonos. Este primer estudio sirve para obtener una aproximación de equipos necesarios, así como la posible situación de estos dentro de la estación. Tras esto, se procede a la simulación de la estación mediante el programa de simulación acústica y electroacústica EASE 4.4. Para ello, se diseña la estación en un modelo 3D, en el que cada superficie se asocia a su material correspondiente. Para facilitar el diseño y el cómputo de las simulaciones se divide la estación en 3 partes por separado. Cada una corresponde a un nivel de la estación: Ground level, el nivel inferior que contiene la entrada; Concourse Level, pasillo que comunica los dos andenes; y Platform Level, en el que realizarán las paradas los trenes. Una vez realizado el diseño se procede al posicionamiento de altavoces en los diferentes niveles de la estación. Debido al clima existente en la isla, el cual ronda los 20°C a lo largo de todo el año, no es necesaria la instalación de sistemas de aire acondicionado o calefacción, por lo que la estación no está totalmente cerrada. Esto supone un problema al realizar las simulaciones en EASE, ya que al tratarse de un recinto abierto se deberán hallar parámetros como el tiempo de reverberación o el volumen equivalente por otros medios. Para ello, se utilizará el método Ray Tracing, mediante el cual se halla el tiempo de reverberación por la respuesta al impulso de la sala; y a continuación se calcula un volumen equivalente del recinto mediante la fórmula de Eyring. Con estos datos, se puede proceder a calcular los parámetros necesarios: nivel de presión sonora directo, nivel de presión sonora total y STI (Speech Transmission Index). Para obtener este último será necesario ecualizar antes en cada uno de los niveles de la estación. Una vez hechas las simulaciones, se comprueba que el nivel de presión sonora y los valores de inteligibilidad son acordes con los requisitos dados por el cliente. Tras esto, se procede a realizar los bucles de altavoces y el cálculo de amplificadores necesarios. Se estudia la situación de los micrófonos, que servirán para poder variar la potencia emitida por los altavoces dependiendo del nivel de ruido en la estación. Una vez obtenidos todos los equipos necesarios en la estación, se hace el conexionado entre éstos, tanto de una forma simplificada en la que se pueden ver los bucles de altavoces en cada nivel de la estación, como de una forma más detallada en la que se muestran las conexiones entre cada equipo del rack. Finalmente, se realiza el etiquetado de los equipos y un presupuesto estimado con los costes del diseño del sistema PAGA. ABSTRACT. The aim of this Final Degree Project is the design of the PAGA (Public Address / General Alarm) system in the train station Waipahu Transit Center in the city of Honolulu, Hawaii. This station is part of a new rail line that is currently under construction, called Honolulu Rail Transit. Initially, the rail line will have 21 stations, in which almost all are designed elevated using the highways that cross the island as reference. At first, it is treated an acoustic study in the areas to cover, choosing the equipment needed: switches, loudspeakers, amplifiers, DPS, control station and microphones. This first study helps to obtain an approximation of the equipments needed, as well as their placement inside the station. Thereafter, it is proceeded to do the simulation of the station through the acoustics and electroacoustics simulation software EASE 4.4. In order to do that, it is made the 3D design of the station, in which each surface is associated with its material. In order to ease the design and calculation of the simulations, the station has been divided in 3 zones. Each one corresponds with one level of the station: Ground Level, the lower level that has the entrance; Concourse Level, a corridor that links the two platforms; and Platform Level, where the trains will stop. Once the design is made, it is proceeded to place the speakers in the different levels of the station. Due to the weather in the island, which is about 20°C throughout the year, it is not necessary the installation of air conditioning or heating systems, so the station is not totally closed. This cause a problem when making the simulations in EASE, as the project is open, and it will be necessary to calculate parameters like the reverberation time or the equivalent volume by other methods. In order to do that, it will be used the Ray Tracing method, by which the reverberation time is calculated by the impulse response; and then it is calculated the equivalent volume of the area with the Eyring equation. With this information, it can be proceeded to calculate the parameters needed: direct sound pressure level, total sound pressure level and STI (Speech Transmission Index). In order to obtain the STI, it will be needed to equalize before in each of the station’s levels. Once the simulations are done, it is checked that the sound pressure level and the intelligibility values agree with the requirements given by the client. After that, it is proceeded to perform the speaker’s loops and the calculation of the amplifiers needed. It is studied the placement of the microphones, which will help to vary the power emitted by the speakers depending on the background noise level in the station. Once obtained all the necessary equipment in the station, it is done the connection diagram, both a simplified diagram in which there can be seen the speaker’s loops in each level of the station, or a more detailed diagram in which it is shown the wiring between each equipment of the rack. At last, it is done the labeling of the equipments and an estimated budget with the expenses for the PAGA design.
Resumo:
This paper studies the disruption management problem of rapid transit rail networks. Besides optimizing the timetable and the rolling stock schedules, we explicitly deal with the effects of the disruption on the passenger demand. We propose a two-step approach that combines an integrated optimization model (for the timetable and rolling stock) with a model for the passengers’ behavior. We report our computational tests on realistic problem instances of the Spanish rail operator RENFE. The proposed approach is able to find solutions with a very good balance between various managerial goals within a few minutes. Se estudia la gestión de las incidencias en redes de metro y cercanías. Se optimizan los horarios y la asignación del material rodante, teniendo en cuenta el comportamiento de los pasajeros. Se reallizan pruebas en varias líneas de la red de cercanías de Madrid, con resultados satisfactorios.
Resumo:
In this paper, a mathematical programming model and a heuristically derived solution is described to assist with the efficient planning of services for a set of auxiliary bus lines (a bus-bridging system) during disruptions of metro and rapid transit lines. The model can be considered static and takes into account the average flows of passengers over a given period of time (i.e., the peak morning traffic hour) Auxiliary bus services must accommodate very high demand levels, and the model presented is able to take into account the operation of a bus-bridging system under congested conditions. A general analysis of the congestion in public transportation lines is presented, and the results are applied to the design of a bus-bridging system. A nonlinear integer mathematical programming model and a suitable approximation of this model are then formulated. This approximated model can be solved by a heuristic procedure that has been shown to be computationally viable. The output of the model is as follows: (a) the number of bus units to assign to each of the candidate lines of the bus-bridging system; (b) the routes to be followed by users passengers of each of the origin–destination pairs; (c) the operational conditions of the components of the bus-bridging system, including the passenger load of each of the line segments, the degree of saturation of the bus stops relative to their bus input flows, the bus service times at bus stops and the passenger waiting times at bus stops. The model is able to take into account bounds with regard to the maximum number of passengers waiting at bus stops and the space available at bus stops for the queueing of bus units. This paper demonstrates the applicability of the model with two realistic test cases: a railway corridor in Madrid and a metro line in Barcelona Planificación de los servicios de lineas auxiliares de autobuses durante las incidencias de las redes de metro y cercanías. El modelo estudia el problema bajo condiciones de alta demanda y condiciones de congestión. El modelo no lineal resultante es resuelto mediante heurísticas que demuestran su utilidad. Se demuestran los resultados en dos corredores de las ciudades de Barcelona y Madrid.