963 resultados para the direct simulation Monte Carlo (DSMC) method
A canonical formulation of the direct position kinematics problem for a general 6-6 stewart platform
Resumo:
This paper deals with the direct position kinematics problem of a general 6-6 Stewart platform, the complete solution of which is not reported in the literature until now and even establishing the number of possible solutions for the general case has remained an unsolved problem for a long period. Here a canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform is presented. The kinematic equations are expressed as a system of six quadratic and three linear equations in nine unknowns, which has a maximum of 64 solutions. Thus, it is established that the mechanism, in general, can have up to 64 closures. Further reduction of the system is shown arriving at a set of three quartic equations in three unknowns, the solution of which will yield the assembly configurations of the general Stewart platform with far less computational effort compared to earlier models.
Resumo:
The Turkevich method for synthesizing gold nanoparticles, using sodium citrate as the reducing agent, is renowned for its ability to produce biocompatible colloids with mean size >10 nm. Here we show that monodisperse gold nanoparticles in the 5-10 nm size range can be synthesized by simply reversing the order of addition of reactants, i.e. adding chloroauric acid to citrate solution. Kinetic studies and electron microscopic characterization revealed that the reactivity of chloroauric acid, initial molar ratio of citrate to chloroauric acid (MR), and reaction mixture pH play an important role in producing monodisperse gold nanoparticles. Reversing the order of addition also enhanced the stabilization of nanoparticles at high MR values. Remarkably, the system exhibits a `memory' of the order of addition, even when the timescale of mixing is much shorter than the timescale of synthesis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A few variance reduction schemes are proposed within the broad framework of a particle filter as applied to the problem of structural system identification. Whereas the first scheme uses a directional descent step, possibly of the Newton or quasi-Newton type, within the prediction stage of the filter, the second relies on replacing the more conventional Monte Carlo simulation involving pseudorandom sequence with one using quasi-random sequences along with a Brownian bridge discretization while representing the process noise terms. As evidenced through the derivations and subsequent numerical work on the identification of a shear frame, the combined effect of the proposed approaches in yielding variance-reduced estimates of the model parameters appears to be quite noticeable. DOI: 10.1061/(ASCE)EM.1943-7889.0000480. (C) 2013 American Society of Civil Engineers.
Resumo:
This paper addresses the problem of finding optimal power control policies for wireless energy harvesting sensor (EHS) nodes with automatic repeat request (ARQ)-based packet transmissions. The EHS harvests energy from the environment according to a Bernoulli process; and it is required to operate within the constraint of energy neutrality. The EHS obtains partial channel state information (CSI) at the transmitter through the link-layer ARQ protocol, via the ACK/NACK feedback messages, and uses it to adapt the transmission power for the packet (re)transmission attempts. The underlying wireless fading channel is modeled as a finite state Markov chain with known transition probabilities. Thus, the goal of the power management policy is to determine the best power setting for the current packet transmission attempt, so as to maximize a long-run expected reward such as the expected outage probability. The problem is addressed in a decision-theoretic framework by casting it as a partially observable Markov decision process (POMDP). Due to the large size of the state-space, the exact solution to the POMDP is computationally expensive. Hence, two popular approximate solutions are considered, which yield good power management policies for the transmission attempts. Monte Carlo simulation results illustrate the efficacy of the approach and show that the approximate solutions significantly outperform conventional approaches.
Resumo:
Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The study introduces two new alternatives for global response sensitivity analysis based on the application of the L-2-norm and Hellinger's metric for measuring distance between two probabilistic models. Both the procedures are shown to be capable of treating dependent non-Gaussian random variable models for the input variables. The sensitivity indices obtained based on the L2-norm involve second order moments of the response, and, when applied for the case of independent and identically distributed sequence of input random variables, it is shown to be related to the classical Sobol's response sensitivity indices. The analysis based on Hellinger's metric addresses variability across entire range or segments of the response probability density function. The measure is shown to be conceptually a more satisfying alternative to the Kullback-Leibler divergence based analysis which has been reported in the existing literature. Other issues addressed in the study cover Monte Carlo simulation based methods for computing the sensitivity indices and sensitivity analysis with respect to grouped variables. Illustrative examples consist of studies on global sensitivity analysis of natural frequencies of a random multi-degree of freedom system, response of a nonlinear frame, and safety margin associated with a nonlinear performance function. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
对微尺度气体流动,Navier-Stokes方程和一阶速度滑移边界条件的结果与实验数据相比,在滑移区相互符合,在过渡领域则显著偏离,为改善Navier-Stokes方程在过渡领域的表现,有些研究者尝试引入二阶速度滑移边界条件,如Cercignani模型,Deissler模型和Beskok-Karniadakis模型.以微槽道气体流动为例,将Navier-Stokes方程在不同的二阶速度滑移模型下的结果与动理论的直接模拟Monte Carlo(DSMC)方法和信息保存(IP)方法以及实验数据进行比较.在所考察的3种具有代表性的二阶速度滑移模型中,Cercignani模型表现最好,其所给出的质量流率在Knudsen数为0.4时仍与DSMC和IP结果相符;然而,细致比较表明,Cercignani模型给出的物面滑移速度及其附近的速度分布在滑流区和过渡领域的分界处(Kn=0.1)已明显偏离DSMC和IP的结果.
Resumo:
Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.