924 resultados para temperature-based models
Resumo:
This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
This Special Issue of The Holocene contains 16 research papers based on a symposium at the 11th International Meeting of the European Union of Geosciences held in Strasbourg in April 2001. The aim of the symposium was a state-of-the-art assessment of empirical studies of postglacial marine and terrestrial climatic archives and their integration with numerical climate models. This editorial places the individual papers in the broader context of natural climate variability and anthropogenic impacts on the global climate system, regional differences in climate between maritime and continental areas, and the need for an improved theoretical basis for understanding the underlying causes of environmental change. The focus of the Special Issue is the dynamic and relatively well-understood climate of the North Atlantic and the European realm, where, in relation to the steepest offshore temperature gradient on Earth, observational data are abundant and many recent advances have been made in climate reconstruction from proxy archives. The editorial also contains a summary and overview of the papers included in the four main sections of the Special Issue, which emphasize: (1) numerical modelling experiments; (2) models of glacier buildup and equilibrium-line altitude; (3) marine and terrestrial proxy records of climatic change; and (4) multiproxy palaeoenvironmental reconstruction of a Portuguese lagoonal system.
Resumo:
Quantitative and qualitative analyses of planktonic foraminiferal assemblages from 134 core-top sediment samples collected along the western Iberian margin were used to assess the latitudinal and longitudinal changes in surface water conditions and to calibrate a Sea Surface Temperature (SST) transfer function for this seasonal coastal upwelling region. Q-mode factor analysis performed on relative abundances yielded three factors that explain 96% of the total variance: factor 1 (50%) is exclusively defined by Globigerina bulloides, the most abundant and widespread species, and reflects the modern seasonal (May to September) coastal upwelling areas; factor 2 (32%) is dominated by Neogloboquadrina pachyderma (dextral) and Globorotalia inflata and seems to be associated with the Portugal Current, the descending branch of the North Atlantic Drift; factor 3 (14%) is defined by the tropical-sub-tropical species Globigerinoides ruber (white), Globigerinoides trilobus trilobus, and G. inflata and mirrors the influence of the winter-time eastern branch of the Azores Current. In conjunction with satellite-derived SST for summer and winter seasons integrated over an 18 year period the regional foraminiferal data set is used to calibrate a SST transfer function using Imbrie & Kipp, MAT and SIMMAX(ndw) techniques. Similar predicted errors (RMSEP), correlation coefficients, and residuals' deviation from SST estimated for both techniques were observed for both seasons. All techniques appear to underestimate SST off the southern Iberia margin, an area mainly occupied by warm waters where upwelling occurs only occasionally, and overestimate SST on the northern part of the west coast of the Iberia margin, where cold waters are present nearly all year round. The comparison of these regional calibrations with former Atlantic and North Atlantic calibrations for two cores, one of which is influenced by upwelling, reveals that the regional one attests more robust paleo-SSTs than for the other approaches.
Resumo:
Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.
Resumo:
Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.
Resumo:
Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.
Resumo:
Background: Implementing effective antenatal care models is a key global policy goal. However, the mechanisms of action of these multi-faceted models that would allow widespread implementation are seldom examined and poorly understood. In existing care model analyses there is little distinction between what is done, how it is done, and who does it. A new evidence-informed quality maternal and newborn care (QMNC) framework identifies key characteristics of quality care. This offers the opportunity to identify systematically the characteristics of care delivery that may be generalizable across contexts, thereby enhancing implementation. Our objective was to map the characteristics of antenatal care models tested in Randomised Controlled Trials (RCTs) to a new evidence-based framework for quality maternal and newborn care; thus facilitating the identification of characteristics of effective care.
Methods: A systematic review of RCTs of midwifery-led antenatal care models. Mapping and evaluation of these models’ characteristics to the QMNC framework using data extraction and scoring forms derived from the five framework components. Paired team members independently extracted data and conducted quality assessment using the QMNC framework and standard RCT criteria.
Results: From 13,050 citations initially retrieved we identified 17 RCTs of midwifery-led antenatal care models from Australia (7), the UK (4), China (2), and Sweden, Ireland, Mexico and Canada (1 each). QMNC framework scores ranged from 9 to 25 (possible range 0–32), with most models reporting fewer than half the characteristics associated with quality maternity care. Description of care model characteristics was lacking in many studies, but was better reported for the intervention arms. Organisation of care was the best-described component. Underlying values and philosophy of care were poorly reported.
Conclusions: The QMNC framework facilitates assessment of the characteristics of antenatal care models. It is vital to understand all the characteristics of multi-faceted interventions such as care models; not only what is done but why it is done, by whom, and how this differed from the standard care package. By applying the QMNC framework we have established a foundation for future reports of intervention studies so that the characteristics of individual models can be evaluated, and the impact of any differences appraised.
Resumo:
Ground-source heat pump (GSHP) systems represent one of the most promising techniques for heating and cooling in buildings. These systems use the ground as a heat source/sink, allowing a better efficiency thanks to the low variations of the ground temperature along the seasons. The ground-source heat exchanger (GSHE) then becomes a key component for optimizing the overall performance of the system. Moreover, the short-term response related to the dynamic behaviour of the GSHE is a crucial aspect, especially from a regulation criteria perspective in on/off controlled GSHP systems. In this context, a novel numerical GSHE model has been developed at the Instituto de Ingeniería Energética, Universitat Politècnica de València. Based on the decoupling of the short-term and the long-term response of the GSHE, the novel model allows the use of faster and more precise models on both sides. In particular, the short-term model considered is the B2G model, developed and validated in previous research works conducted at the Instituto de Ingeniería Energética. For the long-term, the g-function model was selected, since it is a previously validated and widely used model, and presents some interesting features that are useful for its combination with the B2G model. The aim of the present paper is to describe the procedure of combining these two models in order to obtain a unique complete GSHE model for both short- and long-term simulation. The resulting model is then validated against experimental data from a real GSHP installation.
Resumo:
In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.
Resumo:
The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.
Resumo:
Les organismes aquatiques sont adaptés à une grande variabilité hydrique et thermique des rivières. Malgré ceci, la régulation des eaux suscite des changements aux débits qui peuvent provoquer des impacts négatifs sur la biodiversité et les processus écologiques en rivière. Celle-ci peut aussi causer des modifications au niveau des régimes thermiques et des caractéristiques de l’habitat du poisson. Des données environnementales et biologiques décrivant l’habitat du poisson existent, mais elles sont incomplètes pour plusieurs rivières au Canada et de faible qualité, limitant les relations quantitatives débit-température-poissons à un petit nombre de rivières ou à une région étudiée. La recherche menée dans le cadre de mon doctorat concerne les impacts de la génération d'hydroélectricité sur les rivières; soit les changements aux régimes hydriques et thermiques reliés à la régulation des eaux sur la variation des communautés ichtyologiques qui habitent les rivières régulées et naturelles au Canada. Suite à une comparaison d’échantillonnage de pêche, une méthode constante pour obtenir des bons estimés de poisson (richesse, densité et biomasse des espèces) a été établie pour évaluer la structure de la communauté de poissons pour l’ensemble des rivières ciblées par l’étude. Afin de mieux comprendre ces changements environnementaux, les principales composantes décrivant ces régimes ont été identifiées et l’altération des régimes hydriques pour certaines rivières régulées a été quantifiée. Ces résultats ont servi à établir la relation significative entre le degré de changement biotique et le degré de changement hydrique pour illustrer les différences entre les régimes de régulation. Pour faire un complément aux indices biotiques déjà calculés pour l’ensemble des communautés de poissons (diversité, densité et biomasse des espèces par rivière), les différences au niveau des guildes de poissons ont été quantifiées pour expliquer les divers effets écologiques dus aux changements de régimes hydriques et thermiques provenant de la gestion des barrages. Ces derniers résultats servent à prédire pour quels traits écologiques ou groupes d’espèces de poissons les composantes hydriques et thermiques sont importantes. De plus, ces derniers résultats ont servi à mettre en valeur les variables décrivant les régimes thermiques qui ne sont pas toujours inclues dans les études hydro-écologiques. L’ensemble des résultats de cette thèse ont des retombées importantes sur la gestion des rivières en évaluant, de façon cohérente, l’impact de la régulation des rivières sur les communautés de poissons et en développant des outils de prévision pour la restauration des écosystèmes riverains.