792 resultados para tachinid flies


Relevância:

10.00% 10.00%

Publicador:

Resumo:

I find it hard to believe that already we are graduating our third group of students. It seem like our department was founded only a few months ago. Time Flies! Over the years I've come to respect the energy,Principles, commitment, talent and diversity of my colleagues in visual arts. I have never worked with such an outstanding group of people, and I firmly believe we deliver a University experience second to none. Having said that, I also believe our success would be diminished were it not for the fact that we have had the priviledge of working with students who were equally outstanding. Newfoundlanders can be justly proud of the Sir wilfred Grenfell College graduates from the many communities throughout the province who will represent Newfoundland and Labrador admirably on regional, national and international levels in years to come. This years catalogue records part of the many accomplishments of the class of 1994. Once again it is evident that discovering, nuturing and developing individual expression yields artwork of substance and consequence. It also confirms our belief that students should independent, resourceful and creative problem-solvers with a firm belief in their own view-points and the wherewithall to express those viewpoints through personal visual expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - Clostridium difficile is a bacterial healthcare-associated infection that may be transferred by houseflies (Musca domestica) due to their close ecological association with humans and cosmopolitan nature. Aim - To determine the ability of M. domestica to transfer C. difficile both mechanically and following ingestion. Methods - M. domestica were exposed to independent suspensions of vegetative cells and spores of C. difficile, then sampled on to selective agar plates immediately postexposure and at 1-h intervals to assess the mechanical transfer of C. difficile. Fly excreta was cultured and alimentary canals were dissected to determine internalization of cells and spores. Findings - M. domestica exposed to vegetative cell suspensions and spore suspensions of C. difficile were able to transfer the bacteria mechanically for up to 4 h upon subsequent contact with surfaces. The greatest numbers of colony-forming units (CFUs) per fly were transferred immediately following exposure (mean CFUs 123.8 +/− 66.9 for vegetative cell suspension and 288.2 +/− 83.2 for spore suspension). After 1 h, this had reduced (21.2 +/− 11.4 for vegetative cell suspension and 19.9 +/− 9 for spores). Mean C. difficile CFUs isolated from the M. domestica alimentary canal was 35 +/− 6.5, and mean C. difficile CFUs per faecal spot was 1.04 +/− 0.58. C. difficile could be recovered from fly excreta for up to 96 h. Conclusion - This study describes the potential for M. domestica to contribute to environmental persistence and spread of C. difficile in hospitals, highlighting flies as realistic vectors of this micro-organism in clinical areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethanol, classified as a drug, affects the central nervous system, and its consumption has been linked to the development of several behaviours including tolerance and dependence. Alcohol tolerance is defined as the need for higher doses of alcohol to induce the same changes observed in the initial exposure or where repetitive exposures of the same alcohol dose induce a lower response. Ethanol has been shown to interact with numerous targets and ultimately influence both short and long term adaptation at the cellular and molecular level in brain [1]. These adaptation processes are likely to involve signalling molecules: our work has focussed on G proteins gene expression. Using both wild type and several mutant fruit fly (Drosophila melanogaster) as a model for behaviour and molecular studies, we observed significant increases in sedation time (ST50) in response to alcohol (P<0.001) Fig.A. We also observed a consistent and significant decrease of Gq protein mRNA expression in Drosophila dUNC and DopR2 mutants chronically exposed to alcohol (*P<0.05). Fig B. Method: Six male flies were observed in drosophila polystyrene 25 x 95mm transparent vial in between cotton plugs. To the top plug, 500uL of 100% ethanol was added. Time till 50% of the flies were sedated was recorded on each day following the schedule. Fig. C (n=4-6). Using RT-PCR, we also quantified G protein mRNA expression levels one hour post initial 30 minutes of ethanol expression on day 1 and day 3 relative to expression in naïve flies.(n=2) [A] Increase in sedation time indicative of tolerance in different mutant lines and wild type flies. Six male flies were used in each experiment and (n= 4-6. ***P<0.001 unpaired t tests). [B] RT-PCR results showing significant reduction in Gq mRNA in flies chronically exposed to alcohol. (n=2. *P<0.05) [C] Alcohol exposure schedule. (1) Kaun K.R., R. Azanchi, Z. Maung, J. Hirsh, U. Heberlein. (2011). A Drosophila model for alcohol reward. Nature Neuroscience. 14 (5), 612–619.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the prediction that, if hoverflies are Batesian mimics, this may extend to behavioral mimicry such that their numerical abundance at each hour of the day (the daily activity pattern) is related to the numbers of their hymenopteran models. After accounting for site, season, microclimatic responses and for general hoverfly abundance at three sites in north-west England, the residual numbers of mimics were significantly correlated positively with their models 9 times out of 17, while 16 out of 17 relationships were positive, itself a highly significant non-random pattern. Several eristaline flies showed significant relationships with honeybees even though some of them mimic wasps or bumblebees, perhaps reflecting an ancestral resemblance to honeybees. There was no evidence that good and poor mimics differed in their daily activity pattern relationships with models. However, the common mimics showed significant activity pattern relationships with their models, but the rarer mimics did not. We conclude that many hoverflies show behavioral mimicry of their hymenopteran models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frugivorous “true” fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a nonresourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or nonaggregated; (ii) mating system was resource or nonresource based; (iii) flies utilized possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was nonresource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behavior align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a nonresource based, aggregation system for which we also have evidence that land-marking may be involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les pollinisateurs indigènes sont importants pour la production de canneberges. Ils sont pourtant menacés par les pratiques agricoles qui s’intensifient. Pour établir un plan de conservation efficace, une meilleure connaissance des facteurs intrinsèques aux exploitations est essentielle. L’objectif principal de cette étude était de déterminer la diversité et abondance des abeilles et syrphes retrouvées en cannebergières. Quinze fermes ont été échantillonnées selon la régie de culture, le type de sol et le type d’habitat naturel retrouvé près des cannebergières. Des pièges-bols disposés en transect ainsi que l’utilisation de filet entomologique ont été utilisés pour échantillonner les pollinisateurs. Au total, 135 espèces de pollinisateurs indigènes ont été capturées en 2013 et 2014. Le type de sol ainsi que l’habitat naturel influençaient les communautés de pollinisateurs, alors que la régie de culture ne les affectait pas. L’abeille Melitta americana, spécialiste du pollen de canneberge, a été capturée plus souvent dans les tourbières.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital component of Drosophila cellular immunity. To identify novel genes that mediate the cellular response to bacteria, we conducted three separate genetic screens using the Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also screened for the ability of their hemocytes to clear S. aureus infection through the process of phagosome maturation. Genome-wide association analyses were performed to identify potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or in 528 candidate genes, many of which have no known role in immunity. Three genes, dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells significantly impaired the innate immune response to S. aureus. The DGRP S. aureus screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 mutant flies was analyzed and it was found that A2bp1 negatively regulates the expression of the Immunoglobulin-superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis. Overall, we present an examination of the cellular immune response to bacteria with the aim of identifying and characterizing roles for novel mediators of innate immunity in Drosophila. By screening panel of lines in which all genetic variants are known, we successfully identified a large set of candidate genes that could provide a basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, immune-specific role for the highly conserved Fox-1 family member, A2bp1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perimeter-baiting of non-crop vegetation using toxic protein baits was developed overseas as a technique for control of melon fly, Zeugodacus (Zeugodacus) cucurbitae (Coquillett) (formerly Bactrocera (Zeugodacus) cucurbitae), and evidence suggests that this technique may also be effective in Australia for control of local fruit fly species in vegetable crops. Using field cage trials and laboratory reared flies, primary data were generated to support this approach by testing fruit flies' feeding response to protein when applied to eight plant species (forage sorghum, grain sorghum, sweet corn, sugarcane, eggplant, cassava, lilly pilly and orange jessamine) and applied at three heights (1, 1.5 and 2 m). When compared across the plants, Queensland fruit fly, Bactrocera tryoni (Froggatt), most commonly fed on protein bait applied to sugarcane and cassava, whereas more cucumber fly, Zeugodacus (Austrodacus) cucumis (French) (formerly Bactrocera (Austrodacus) cucumis), fed on bait applied to sweet corn and forage sorghum. When protein bait was applied at different heights, B. tryoni responded most to bait placed in the upper part of the plants (2 m), whereas Z. cucumis preferred bait placed lower on the plants (1 and 1.5 m). These results have implications for optimal placement of protein bait for best practice control of fruit flies in vegetable crops and suggest that the two species exhibit different foraging behaviours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soybean Stem Fly (SSF), Melanagromyza sojae (Zehntner), belongs to the family Agromyzidae and is highly polyphagous, attacking many plant species of the family Fabaceae, including soybean and other beans. SSF is regarded as one of the most important pests in soybean fields of Asia (e.g., China, India), North East Africa (e.g., Egypt), parts of Russia, and South East Asia. Despite reports of Agromyzidae flies infesting soybean fields in Rio Grande do Sul State (Brazil) in 1983 and 2009 and periodic interceptions of SSF since the 1940s by the USA quarantine authorities, SSF has not been officially reported to have successfully established in the North and South Americas. In South America, M. sojae was recently confirmed using morphology and its complete mitochondrial DNA (mtDNA) was characterized. In the present study, we surveyed the genetic diversity of M. sojae, collected directly from soybean host plants, using partial mtDNA cytochrome oxidase I (COI) gene, and provide evidence of multiple (>10) maternal lineages in SSF populations in South America, potentially representing multiple incursion events. However, a single incursion involving multiple-female founders could not be ruled out. We identified a haplotype that was common in the fields of two Brazilian states and the individuals collected from Australia in 2013. The implications of SSF incursions in southern Brazil are discussed in relation to the current soybean agricultural practices, highlighting an urgent need for better understanding of SSF population movements in the New World, which is necessary for developing effective management options for this significant soybean pest. © FUNPEC-RP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bactrocera tryoni (Froggatt) is Australia's major horticultural insect pest, yet monitoring females remains logistically difficult. We trialled the ‘Ladd trap’ as a potential female surveillance or monitoring tool. This trap design is used to trap and monitor fruit flies in countries other (e.g. USA) than Australia. The Ladd trap consists of a flat yellow panel (a traditional ‘sticky trap’), with a three dimensional red sphere (= a fruit mimic) attached in the middle. We confirmed, in field-cage trials, that the combination of yellow panel and red sphere was more attractive to B. tryoni than the two components in isolation. In a second set of field-cage trials, we showed that it was the red-yellow contrast, rather than the three dimensional effect, which was responsible for the trap's effectiveness, with B. tryoni equally attracted to a Ladd trap as to a two-dimensional yellow panel with a circular red centre. The sex ratio of catches was approximately even in the field-cage trials. In field trials, we tested the traditional red-sphere Ladd trap against traps for which the sphere was painted blue, black or yellow. The colour of sphere did not significantly influence trap efficiency in these trials, despite the fact the yellow-panel/yellow-sphere presented no colour contrast to the flies. In 6 weeks of field trials, over 1500 flies were caught, almost exactly two-thirds of them being females. Overall, flies were more likely to be caught on the yellow panel than the sphere; but, for the commercial Ladd trap, proportionally more females were caught on the red sphere versus the yellow panel than would be predicted based on relative surface area of each component, a result also seen the field-cage trial. We determined that no modification of the trap was more effective than the commercially available Ladd trap and so consider that product suitable for more extensive field testing as a B. tryoni research and monitoring tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

American visceral leishmaniasis is a zoonosis caused by Leishmania infantum and transmitted by the bite of the sand flies Lutzomia longipalpis.The main domestic reservoir is the dog, while foxes and opposums are the known wild reservoirs. However, identification of natural infections with L. infantum in rodents appears for need of investigating the participation of these rodents how source of infection of the parasite. In the present work the Leishmania infantum infection was investigated in rodents captured in Rio Grande do Norte, aiming at to offer subsidies to the understanding of the epidemic chains of LVA in the State. Thirteen Galea spixii were distributed in four groups, being G1 the group control with four animals and the others, G2, G3 and G4, with three animals each. Those animals were intraperitoneally inoculated with 107 promastigotas of L. infantum and accompanied for, respectively, 30, 90 and 180 days. Weekly the animals were monitored as for the corporal weight and rectal temperature. At the end of each stipulated period the animals were killed. Blood were used for determination of the parameters biochemical and haematological, PCR, ELISA, microscopic examination and cultivation in NNN medium. Liver, spleen and lymph node were used in Giemsa-stained impression and cultivation in NNN medium. Liver and spleen fragments were still used in PCR and histopathological, respectively. At the same time 79 rodents of the species Rattus rattus, Bolomys lasiurus, Oligoryzomys nigripis, Oryzomys subflavus and Trichomys apereoides were captured in the Municipal districts of Brejinho, Campo Grande, Coronel Ezequiel, Passa e Fica and Vázea for identification of natural infection with L. infantum. Evidence of infection was checked by direct examination of Giemsa-stained impression of liver, spleen and blood and culture of these tissues in NNN medium. Antibodies were researched by ELISA. They were not found differences among the weigh corporal final, rectal temperature and biochemical and haematological parameters of the Galea spixii controls and infected. The rectal temperature of the animals varied from 36OC to 40OC. For the first time values of the haematocrit (33,6% to 42,8%), hemoglobin (10,2 to 14,5g/dl), erythrocyts number (4,67x106 to 6,90x106/mm3), total leukocytes (0,9x103 to 9,2x103/mm3), platelets (49x103 to 509x103/mm3) total proteins (1,56 to 6,06 g/dl), albumin (1,34 to 3,05 g/dl) and globulins (0,20 to 3,01 g/dl) of the Galea spixii were determined. The lymphocytes were the most abundant leucocytes. Infection for L. infantum was diagnosed in two animals euthanasied 180 days after the infection. In one of the animals was also identified antibodies anti-Leishmania. The parasite was not found in none of the five other species of rodents captured. Galea spixii are resistant to the infection for L. infantum and they are not good models for the study for visceral leishmaniose, although they can act as infection sources. More studies are necessary to determine the paper of the rodents in the epidemic chain of transmission of the visceral leishmaniose in the State of Rio Grande do Norte

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leishmaniasis are endemic diseases wild spread in the New and Old World, caused by the flagelated protozoan Leishmania. In the New World, the distribution of different forms of leishmaniasis is mostly in tropical regions. In the State of Rio Grande do Norte, Northeast Brazil, 85% of the captured sand flies fauna is Lutzomyia longipalpis. The distribution of the sand fly vector in the state overlaps with the disease distribution, where the presence of sand flies is associated with presence of animals shelters. The aim of this study was to analyse the blood meal preference of sand flies vector from the genus Lutzomyia spp. in laboratory conditions, to verify the vector life cicle at different temperatures sets and to identify the main blood meal source in endemic areas for visceral leishmaniasis (VL) at peri-urban regions of Natal. Sand flies samples were collected from the municipalities of São Gonçalo do Amarante and Nísia Floresta where female sand flies were grouped for the colony maintenance in the laboratory and for the analysis of the preferred source of sand fly blood meal in natural environment. The prevalence of blood meal preference and oviposition for the females sand flies was 97% for Cavia porcellus with oviposition of 19 eggs/female; 97% for Eqqus caballus with 19 eggs/female; 98% for human blood with 14 eggs/female; 71.3% for Didelphis albiventris with 8.4 eggs/female; 73% for Gallus gallus with 14 eggs/female; 86% for Canis familiaris with 10.3 eggs/female; 81.4% for Galea spixii with 26 eggs/female; 36% for Callithrix jachus with 15 eggs/female; 42.8% for Monodelphis domestica with 0% of oviposition. Female sand flies did not take a blood meal from Felis catus. Sand flies life cycle ranged from 32-40 days, with 21-50 oviposition rates approximately. This study also showed that at 32°C the life cycle had 31 days, at 28° C it had 50 days and at 22°C it increased to 79 days. Adjusting the temperature to 35°C the eggs did not hatch, thus blocking the life cycle. A total of 1540 sand flies were captured, among them, 1.310 were male and 230 were female. Whereas 86% of the sand flies captured were Lu. longipalpis as compared to 10.5% for Lu. evandroi and, 3.2% for L. lenti and 0.3% for Lu whitmani. The ratio between female and male sandfly was approximately 6 males to 1 female. In Nísia Floresta, 50.7% of the collected females took their blood meal from armadillo, 12.8% from human. Among the female sand flies captured in São Gonçalo do Amarante, 80 of them were tested for the Leishmania KDNA infectivity where 5% of them were infected with Leishmania chagasi. Female Lutzomyia spp. showed to have an opportunistic blood meal characteristic. The behavioral parameters seem to have a higher influence in the oviposition when compared to the level of total proteins detected in the host s bloodstream. A higher Lu. longipalpis life cycle viability was observed at 28°C. The increase of temperature dropped the life cycle time, which means that the life cycle is modified by temperature range, source of blood meal and humidity. Lu longipalpis was the most specie found in the inner and peridomiciliar environment. In Nísia Floresta, armadillos were the main source of blood meal for Lutzomyia spp. At São Gonçalo do Amarante, humans were the main source of blood meal due to CDC nets placed inside their houses