940 resultados para system dynamics performance


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geochemical and geophysical approaches have been used to investigate the freshwater and saltwater dynamics in the coastal Biscayne Aquifer and Biscayne Bay. Stable isotopes of oxygen and hydrogen, and concentrations of Sr2+ and Ca2+ were combined in two geochemical mixing models to provide estimates of the various freshwater inputs (precipitation, canal water, and groundwater) to Biscayne Bay and the coastal canal system in South Florida. Shallow geophysical electromagnetic and direct current resistivity surveys were used to image the geometry and stratification of the saltwater mixing zone in the near coastal (less than 1km inland) Biscayne Aquifer. The combined stable isotope and trace metal models suggest a ratio of canal input-precipitation-groundwater of 38%–52%–10% in the wet season and 37%–58%–5% in the dry season with an error of 25%, where most (20%) of the error was attributed to the isotope regression model, while the remaining 5% error was attributed to the Sr2+/Ca2+ mixing model. These models suggest rainfall is the dominate source of freshwater to Biscayne Bay. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for less than 2% of the total input. A similar Sr 2+/Ca2+ tracer model indicates precipitation is the dominate source in 9 out of 10 canals that discharge into Biscayne Bay. The two-component mixing model converged for 100% of the freshwater canal samples in this study with 63% of the water contributed to the canals coming from precipitation and 37% from groundwater inputs ±4%. There was a seasonal shift from 63% precipitation input in the dry season to 55% precipitation input in the wet season. The three end-member mixing model converged for only 60% of the saline canal samples possibly due to non-conservative behavior of Sr2+ and Ca2+ in saline groundwater discharging into the canal system. Electromagnetic and Direct Current resistivity surveys were successful at locating and estimating the geometry and depth of the freshwater/saltwater interface in the Biscayne Aquifer at two near coastal sites. A saltwater interface that deepened as the survey moved inland was detected with a maximum interpreted depth to the interface of 15 meters, approximately 0.33 km inland from the shoreline. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Back-reef seascapes represent critical habitat for juvenile and adult fishes. Patch reef, seagrass, and mangrove habitats form a heterogeneous mosaic, often linked by species that use reefs as structure during the day and make foraging migrations into soft-bottom habitat at night. Artificial reefs are used to model natural patch reefs, however may not function equivalently as fish habitat. To study the relative value of natural and artificial patch reefs as fish habitat, these communities in the Sea of Abaco, Bahamas were compared using roving diver surveys and time-lapse photography. Diel turnover in fish abundance, recorded with time-lapse photography and illuminated by infrared light, was quantified across midday, dusk, and night periods to explore possible effects of reef type (artificial vs. natural) on these patterns. Diurnal communities on natural reefs exhibited greater fish abundance, species richness, and functional diversity compared to artificial reefs. Furthermore, both types of reef communities exhibited a significant shift across the diel period, characterized by a decline in total fish density at night, especially for grunts (Haemulidae). Cross-habitat foraging migrations by diurnal or nocturnal species, such as haemulids, are likely central drivers of this twilight turnover and can represent important energy and nutrient subsidies. Time-lapse surveys provided more consistent measures of reef fish assemblages for the smaller artificial reef habitats, yet underestimated abundance of certain taxa and species richness on larger patch habitats when compared to the roving diver surveys. Time-lapse photography complemented with infrared light represent a valuable non-invasive approach to studying behavior of focal species and their fine-scale temporal dynamics in shallow-reef communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to examine the factorsbehind the failure rates of Associate in Arts (AA)graduates from Miami-Dade Community College (M-DCC) transferring to the Florida State University System (SUS). In M-DCC's largest disciplines, the university failure rate was 13% for Business & Management, 13% for Computer Science, and 14% for Engineering. Hypotheses tested were: Hypothesis 1 (H1): The lower division (LD) overall cumulative GPA and/or the LD major field GPA for AA graduates are predictive of the SUS GPA for the Business Management, Computer Science, and Engineering disciplines. Hypothesis 2 (H2): Demographic variables (age, race, gender) are predictive of performance at the university among M-DCC AA graduates in Engineering, Business & Management, and Computer Science. Hypothesis 3 (H3): Administrative variables (CLAST -College Level Academic Skills Test subtests) are predictive of university performance (GPA) for the Business/Management, Engineering, and Computer Science disciplines. Hypothesis 4 (H4): LD curriculum variables (course credits, course quality points) are predictive of SUS performance for the Engineering, Business/Management and Computer Science disciplines. Multiple Regression was the inferential procedureselected for predictions. Descriptive statistics weregenerated on the predictors. Results for H1 identified the LD GPA as the most significant variable in accounting for the variability of the university GPA for the Business & Management, Computer Science, and Engineering disciplines. For H2, no significant results were obtained for theage and gender variables, but the ethnic subgroups indicated significance at the .0001 level. However, differentials in GPA may not have been due directly to the race factor but, rather, to curriculum choices and performance outcomes while in the LD. The CLAST computation variable (H3) was a significant predictor of the SUS GPA. This is most likely due to the mathematics structure pervasive in these disciplines. For H4, there were two curriculum variables significant in explaining the variability of the university GPA (number of required critical major credits completed and quality of the student's performance for these credits). Descriptive statistics on the predictors indicated that 78% of those failing in the State University System had a LD major GPA (calculated with the critical required university credits earned and quality points of these credits) of less than 3.0; and 83% of those failing at the university had an overall community college GPA of less than 3.0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Signal processing techniques for mitigating intra-channel and inter-channel fiber nonlinearities are reviewed. More detailed descriptions of three specific examples highlight the diversity of the electronic and optical approaches that have been investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the static and dynamic characteristics of the semi-elliptical rocking disk on which a pendulum pinned. This coupled system’s response is also analyzed analytically and numerically when a vertical harmonic excitation is applied to the bottom of the rocking disk. Lagrange’s Equation is used to derive the motion equations of the disk-pendulum coupled system. The second derivative test for the system’s potential energy shows how the location of the pendulum’s pivotal point affects the number and stability of equilibria, and the change of location presents different bifurcation diagrams for different geometries of the rocking disk. For both vertically excited and unforced cases, the coupled system shows chaos easily, but the proper chosen parameters can still help the system reach and keep the steady state. For the steady state of the vertically excited rocking disk without a pendulum, the variation of the excitation’s amplitude and frequency result in the hysteresis for the amplitude of the response. When a pendulum is pinned on the rocking disk, three major categories of steady states are presently in the numerical way.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Galway Bay wave energy test site promises to be a vital resource for wave energy researchers and developers. As part of the development of this site, a floating power system is being developed to provide power and data acquisition capabilities, including its function as a local grid connection, allowing for the connection of up to three wave energy converter devices. This work shows results from scaled physical model testing and numerical modelling of the floating power system and an oscillating water column connected with an umbilical. Results from this study will be used to influence further scaled testing as well as the full scale design and build of the floating power system in Galway Bay.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mixing performance of three passive milli-scale reactors with different geometries was investigated at different Reynolds numbers. The effects of design and operating characteristics such as mixing channel shape and volume flow rate were investigated. The main objective of this work was to demonstrate a process design method that uses on Computational Fluid Dynamics (CFD) for modeling and Additive Manufacturing (AM) technology for manufacture. The reactors were designed and simulated using SolidWorks and Fluent 15.0 software, respectively. Manufacturing of the devices was performed with an EOS M-series AM system. Step response experiments with distilled Millipore water and sodium hydroxide solution provided time-dependent concentration profiles. Villermaux-Dushman reaction experiments were also conducted for additional verification of CFD results and for mixing efficiency evaluation of the different geometries. Time-dependent concentration data and reaction evaluation showed that the performance of the AM-manufactured reactors matched the CFD results reasonably well. The proposed design method allows the implementation of new and innovative solutions, especially in the process design phase, for industrial scale reactor technologies. In addition, rapid implementation is another advantage due to the virtual flow design and due to the fast manufacturing which uses the same geometric file formats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the world of professional sports shifting towards employing better sport analytics, the demand for vision-based performance analysis is growing increasingly in recent years. In addition, the nature of many sports does not allow the use of any kind of sensors or other wearable markers attached to players for monitoring their performances during competitions. This provides a potential application of systematic observations such as tracking information of the players to help coaches to develop their visual skills and perceptual awareness needed to make decisions about team strategy or training plans. My PhD project is part of a bigger ongoing project between sport scientists and computer scientists involving also industry partners and sports organisations. The overall idea is to investigate the contribution technology can make to the analysis of sports performance on the example of team sports such as rugby, football or hockey. A particular focus is on vision-based tracking, so that information about the location and dynamics of the players can be gained without any additional sensors on the players. To start with, prior approaches on visual tracking are extensively reviewed and analysed. In this thesis, methods to deal with the difficulties in visual tracking to handle the target appearance changes caused by intrinsic (e.g. pose variation) and extrinsic factors, such as occlusion, are proposed. This analysis highlights the importance of the proposed visual tracking algorithms, which reflect these challenges and suggest robust and accurate frameworks to estimate the target state in a complex tracking scenario such as a sports scene, thereby facilitating the tracking process. Next, a framework for continuously tracking multiple targets is proposed. Compared to single target tracking, multi-target tracking such as tracking the players on a sports field, poses additional difficulties, namely data association, which needs to be addressed. Here, the aim is to locate all targets of interest, inferring their trajectories and deciding which observation corresponds to which target trajectory is. In this thesis, an efficient framework is proposed to handle this particular problem, especially in sport scenes, where the players of the same team tend to look similar and exhibit complex interactions and unpredictable movements resulting in matching ambiguity between the players. The presented approach is also evaluated on different sports datasets and shows promising results. Finally, information from the proposed tracking system is utilised as the basic input for further higher level performance analysis such as tactics and team formations, which can help coaches to design a better training plan. Due to the continuous nature of many team sports (e.g. soccer, hockey), it is not straightforward to infer the high-level team behaviours, such as players’ interaction. The proposed framework relies on two distinct levels of performance analysis: low-level performance analysis, such as identifying players positions on the play field, as well as a high-level analysis, where the aim is to estimate the density of player locations or detecting their possible interaction group. The related experiments show the proposed approach can effectively explore this high-level information, which has many potential applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The high performance computing community has traditionally focused uniquely on the reduction of execution time, though in the last years, the optimization of energy consumption has become a main issue. A reduction of energy usage without a degradation of performance requires the adoption of energy-efficient hardware platforms accompanied by the development of energy-aware algorithms and computational kernels. The solution of linear systems is a key operation for many scientific and engineering problems. Its relevance has motivated an important amount of work, and consequently, it is possible to find high performance solvers for a wide variety of hardware platforms. In this work, we aim to develop a high performance and energy-efficient linear system solver. In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient usage of the target hardware as well as an efficient memory access. The experimental evaluation shows that the novel proposal reports important savings in both time and energy-consumption when compared with the state-of-the-art solvers of the platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the natural evolution of a river–delta–sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River–western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during orogenic evolution, as commonly observed in the Mediterranean area and discussed elsewhere.