935 resultados para structure-function map
Resumo:
The structure and shear flow behaviour of aqueous micellar solutions and gels formed by an amphiphilic poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer with a lengthy hydrophilic poly(oxyethylene) block has been investigated by rheology, small angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). SANS revealed that bridging of chains between micelles introduces, in the micellar solution, an attractive long-range component which can be described through a potential of interaction corresponding to sticky soft spheres. The strength of the attractive interaction increases with increasing concentration. Rheology showed that the dependence of the storage modulus with temperature can be explained as a function of the micellar bridging, micellisation and phase morphology. SAXS studies showed that the orientation adopted by the system in the get phase under shear is similar to that previously observed by us for the gel phase of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer with a long poly(oxyethylene) chain, suggesting that the micellar corona/core length ratio and not the architecture of the block copolymer influences the alignment of the gel phase under shear.
Resumo:
The structure of gold cyanide, AuCN, has been determined at 10 and 300 K using total neutron diffraction. The structure consists of infinite -Au-(CN)-Au-(CN)-Au-(CN)- linear chains, hexagonally packed, with the gold atoms in sheets. The Au-C and Au-N bond lengths are found to be identical, with d(Au-C/N) = 1.9703(5) Angstrom at 300 K. This work supersedes a previous study, by others, which used Rietveld analysis of neutron Bragg diffraction in isolation, and found these bonds to have significantly different lengths (Deltad = 0.24 Angstrom) at 300 K. The total correlation function, T(r), at 10 and 300 K, has been modeled using information derived from total diffraction. The broadening of inter- and intrachain correlations differs markedly due to random displacements of the chains in the direction of the chain axes. This is a consequence of the relatively weak bonding between the chains. An explanation for the negative thermal expansion in the c-direction, which occurs between 10 and 300 K, is presented.
Resumo:
Atomistic molecular dynamics simulations are used to investigate the mechanism by which the antifreeze protein from the spruce budworm, Choristoneura fumiferana, binds to ice. Comparison of structural and dynamic properties of the water around the three faces of the triangular prism-shaped protein in aqueous solution reveals that at low temperature the water structure is ordered and the dynamics slowed down around the ice-binding face of the protein, with a disordering effect observed around the other two faces. These results suggest a dual role for the solvation water around the protein. The preconfigured solvation shell around the ice-binding face is involved in the initial recognition and binding of the antifreeze protein to ice by lowering the barrier for binding and consolidation of the protein:ice interaction surface. Thus, the antifreeze protein can bind to the molecularly rough ice surface by becoming actively involved in the formation of its own binding site. Also, the disruption of water structure around the rest of the protein helps prevent the adsorbed protein becoming covered by further ice growth.
Resumo:
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Resumo:
Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the subset selection cost function includes an A-optimality design criterion to minimize the variance of the parameter estimates that ensures the adequacy and parsimony of the final model. An illustrative example is included to demonstrate the effectiveness of the new approach.
Resumo:
A new structure of Radial Basis Function (RBF) neural network called the Dual-orthogonal RBF Network (DRBF) is introduced for nonlinear time series prediction. The hidden nodes of a conventional RBF network compare the Euclidean distance between the network input vector and the centres, and the node responses are radially symmetrical. But in time series prediction where the system input vectors are lagged system outputs, which are usually highly correlated, the Euclidean distance measure may not be appropriate. The DRBF network modifies the distance metric by introducing a classification function which is based on the estimation data set. Training the DRBF networks consists of two stages. Learning the classification related basis functions and the important input nodes, followed by selecting the regressors and learning the weights of the hidden nodes. In both cases, a forward Orthogonal Least Squares (OLS) selection procedure is applied, initially to select the important input nodes and then to select the important centres. Simulation results of single-step and multi-step ahead predictions over a test data set are included to demonstrate the effectiveness of the new approach.
Resumo:
We study the heat, linear Schrodinger and linear KdV equations in the domain l(t) < x < ∞, 0 < t < T, with prescribed initial and boundary conditions and with l(t) a given differentiable function. For the first two equations, we show that the unknown Neumann or Dirichlet boundary value can be computed as the solution of a linear Volterra integral equation with an explicit weakly singular kernel. This integral equation can be derived from the formal Fourier integral representation of the solution. For the linear KdV equation we show that the two unknown boundary values can be computed as the solution of a system of linear Volterra integral equations with explicit weakly singular kernels. The derivation in this case makes crucial use of analyticity and certain invariance properties in the complex spectral plane. The above Volterra equations are shown to admit a unique solution.
Resumo:
The combination of the synthetic minority oversampling technique (SMOTE) and the radial basis function (RBF) classifier is proposed to deal with classification for imbalanced two-class data. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier structure and the parameters of RBF kernels are determined using a particle swarm optimization algorithm based on the criterion of minimizing the leave-one-out misclassification rate. The experimental results on both simulated and real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.
Resumo:
A novel extension to Kohonen's self-organising map, called the plastic self organising map (PSOM), is presented. PSOM is unlike any other network because it only has one phase of operation. The PSOM does not go through a training cycle before testing, like the SOM does and its variants. Each pattern is thus treated identically for all time. The algorithm uses a graph structure to represent data and can add or remove neurons to learn dynamic nonstationary pattern sets. The network is tested on a real world radar application and an artificial nonstationary problem.
Resumo:
The structure and evolution of the Arctic stratospheric polar vortex is assessed during opposing phases of, primarily, the El Niño–Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO), but the 11 year solar cycle and winters following large volcanic eruptions are also examined. The analysis is performed by taking 2-D moments of vortex potential vorticity (PV) fields which allow the area and centroid of the vortex to be calculated throughout the ERA-40 reanalysis data set (1958–2002). Composites of these diagnostics for the different phases of the natural forcings are then considered. Statistically significant results are found regarding the structure and evolution of the vortex during, in particular, the ENSO and QBO phases. When compared with the more traditional zonal mean zonal wind diagnostic at 60°N, the moment-based diagnostics are far more robust and contain more information regarding the state of the vortex. The study details, for the first time, a comprehensive sequence of events which map the evolution of the vortex during each of the forcings throughout an extended winter period.
Resumo:
Although the co-occurrence of negative affect and pain is well recognized, the mechanism underlying their association is unclear. To examine whether a common self-regulatory ability impacts the experience of both emotion and pain, we integrated neuroimaging, behavioral, and physiological measures obtained from three assessments separated by substantial temporal intervals. Out results demonstrated that individual differences in emotion regulation ability, as indexed by an objective measure of emotional state, corrugator electromyography, predicted self-reported success while regulating pain. In both emotion and pain paradigms, the amygdala reflected regulatory success. Notably, we found that greater emotion regulation success was associated with greater change of amygdalar activity following pain regulation. Furthermore, individual differences in degree of amygdalar change following emotion regulation were a strong predictor of pain regulation success, as well as of the degree of amygdalar engagement following pain regulation. These findings suggest that common individual differences in emotion and pain regulatory success are reflected in a neural structure known to contribute to appraisal processes.
Resumo:
A four-wavelength MAD experiment on a new brominated octanucleotide is reported here. d[ACGTACG(5-BrU)], C77H81BrN30O32P7, (DNA) = 2235, tetragonal, P43212 (No. 96), a = 43.597, c = 26.268 Å, V = 49927.5 Å3, Z = 8, T = 100 K, R = 10.91% for 4312 reflections between 15.0 and 1.46 Å resolution. The self-complementary brominated octanucleotide d[ACGTACG(5-BrU)]2 has been crystallized and data measured to 1.45 Å at both 293 K and a second crystal flash frozen at 100 K. The latter data collection was carried out to the same resolution at the four wavelengths 0.9344, 0.9216, 0.9208 and 0.9003 Å, around the Br K edge at 0.92 Å and the structure determined from a map derived from a MAD data analysis using pseudo-MIR methodology, as implemented in the program MLPHARE. This is one of the first successful MAD phasing experiments carried out at Sincrotrone Elettra in Trieste, Italy. The structure was refined using the data measured at 0.9003 Å, anisotropic temperature factors and the restrained least-squares refinement implemented in the program SHELX96, and the helical parameters are compared with those previously determined for the isomorphous d(ACGTACGT)2 analogue. The asymmetric unit consists of a single strand of octamer with 96 water molecules. No countercations were located. The A-DNA helix geometry obtained has been analysed using the CURVES program.
Resumo:
The copper(II) complex [Cu(bdoa)(H2O)2] (bdoaH2 = benzene-1,2-dioxyacetic acid) reacts with triphenylphosphine (1:4 mol ratio) to give the colourless copper(I) complex [Cu(η1-bdoaH)(PPh3)3] (1) in good yield. The X-ray crystal structure of the complex shows the copper atom at the centre of a distorted tetrahedron, and is ligated by the phosphorus atoms of the three triphenylphosphines and one carboxylate oxygen atom of the bdoaH− ligand. Significant intermolecular hydrogen-bonding exists between the pendant carboxylate OH function of one molecule and the uncoordinated “ketonic” oxygen of a neighbouring molecule. Complex 1 is non-conducting in chloroform but ionizes readily in acetonitrile. The cyclic voltammogram of an acetonitrile solution of 1 shows a single irreversible anodic peak for the oxidation of the PPh3 ligands and the copper(I) centre, and a single irreversible cathodic peak for the reduction of the bdoaH− ion. IR and mass spectral data for 1 are given.