985 resultados para structural loading
Resumo:
Nocardia sp. quantitatively converts salannin 1 and 3-de-O-acetylsalannin 2 (C-seco limonoids) into 3-deacetoxy-1-de[(E)-2-methylbut-2-enoyloxy]salannin-1-en-3-one 10, a novel and potentially bioactive compound with an alpha,beta-unsaturated ketone moiety in ring `A'. In order to establish the sequence of events involved in this transformation and the structural specificity of this bacterial system, several new derivatives of salannin 1 have been prepared. These studies have indicated that the transformation is initiated by deacetylation at C-3, followed by oxidation of the secondary hydroxy group to 3-keto, which appears to facilitate the elimination of the tigloyloxy/acetoxy group at C-1 with the formation of an olefinic linkage between C-1 and C-2. The organism very efficiently transforms some of the derivatives of salannin into their corresponding compounds possessing an enone systemin ring `A', an essential pre-requisite for various biological activities. Some of the C-seco limonoids prepared in the present study, viz. 10, 1,2-didehydro-1,3-dideoxy-3-oxosalannic acid 18, 3-deacetoxy-1-de[(E)-2-methylbut-2-enoyloxy]-20,21,22,23-tetrahydrosal annin-1-en-3-one 15 and 1,2-didehydro-1,3-dideoxy-3-oxosalannol 23 were hitherto not known.
Resumo:
The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.
Resumo:
Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/ PBE/.
Resumo:
The crystal structures of five model peptides Piv-Pro-Gly-NHMe (1), Piv-Pro-beta Gly-NHMe (2), Piv-Pro-beta Gly-OMe (3), Piv-Pro-delta Ava-OMe (4) and Boc-Pro-gamma Abu-OH (5) are described (Piv:pivaloyl; NHMe: N-methylamide; beta Gly:beta-glycine; OMe:O-methyl ester; delta Ava:delta-aminovaleric acid; gamma Abu:gamma-aminobutyric acid). A comparison of the structures of peptides 1 and 2 illustrates the dramatic consequences upon backbone homologation in short sequences. 1 adopts a type II beta-turn conformation in the solid state, while in 2, the molecule adopts an open conformation with the beta-residue being fully extended. Piv-Pro-beta Gly-OMe (3), which differs from 2 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the solid state. In peptide 4, the observed conformation resembles that determined for 2 and 3, with the delta Ava residue being fully extended. In peptide 5, the molecule undergoes a chain reversal, revealing a beta-turn mimetic structure stabilized by a C-H center dot center dot center dot O hydrogen bond.
Resumo:
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
Resumo:
Test results of 24 reinforced concrete wall panels in one-way in-plane action are presented. The panels were loaded at a small eccentricity to reflect possible eccentric loading in practice. Influences of slenderness ratio, aspect ratio, vertical steel, and horizontal steel on the ultimate load are studied. An empirical equation modifying two existing methods is proposed for the prediction of ultimate load. The modified equation includes the effects of slenderness ratio, amount of vertical steel, and aspect ratio. The results predicted by the proposed modified method and five other available equations are compared with 48 test data. The proposed modified equation is found to be satisfactory and, additionally, includes the effect of aspect ratio which is not present in other methods.
Resumo:
Bending analysis of closed cylindrical shells subjected to asymmetric load and having different support conditions is of interest in the design of chimneys, water towers, oil storage tanks, etc. A simple method of analyzing a long cantilever cylindrical shell, subjected to asymmetric load, is presented in the paper, using Schorer’s shell theory and orthogonal functions. The application of the solution has been illustrated with an example of a cantilever shell subjected to wind loads. The results obtained for this problem have been compared with the previously available results to illustrate the accuracy of the results obtained here. The solution presented can also be extended to a cylindrical shell with other support conditions, as well as to the study of free vibration of a cylindrical shell. The present solution will be very useful for designers who need to obtain numerical results for specific problems with minimum computational effort.
Resumo:
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.
Resumo:
The existence of an icosahedral phase in Mg−Al−Ag is better understood on a crystallographic basis rather than on a quantum structural diagram basis. The quasicrystalline structure is delineated in terms of quasiperiodic arrangement of Pauling triacontahedra, which can be identified in the equilibrium structure. Subtle differences in the electron diffraction patterns have been recorded compared to the ideal quasicrystalline pattern. The misalignment of spots and distortions are better attributed to higher order rational approximate structure than anisotropic phason strain. Ares of diffuse intensity have been related to the ordering among the atoms in the clusters.
Resumo:
Oxides of the families Ba3ZnTa2-xNbxO9 and Ba3MgTa2-xNbxO9 were obtained by the solid state reaction route at 1573 K and were found to crystallize in the disordered (cubic) perovskite structure. In Ba3ZnTa2-xNbXO9 and Ba3MgTa2-xNbxO9 the entire range (0 less than or equal to x less than or equal to 1) of solid solutions could be synthesized. The dielectric constant decreases with increase in frequency for all compositions in the range 40 Hz to 100 kHz (epsilon (r) varies from 16 to 22). The dielectric loss (D) shows a broad maximum for both Ba3ZnTa2-xNbxO9 and Ba3MgTa2-xNbxO9. The maxima is centered around 2 kHz in the former and near 10 kHz in the latter. (C) 2001 Elsevier Science Ltd. All sights reserved.
Resumo:
Preferential cleavage of active genes by DNase I has been correlated with a structurally altered conformation of DNA at the hypersensitive site in chromatin. To have a better understanding of the structural requirements for gene activation as probed by DNase I action, digestability by DNase I of synthetic polynucleotides having the ability to adopt B and non-B conformation (like Z-form) was studied which indicated a marked higher digestability of the B-form of DNA. Left handed Z form present within a natural sequence in supercoiled plasmid also showed marked resistance towards DNase I digestion. We show that alternating purine-pyrimidine sequences adopting Z-conformation exhibit DNAse I foot printing even in a protein free system. The logical deductions from the results indicate that 1) altered structure like Z-DNA is not a favourable substrate for DNase I, 2) both the ends of the alternating purine-pyrimidine insert showed hypersensitivity, 3) B-form with a minor groove of 12-13 A is a more favourable substrate for DNase I than an altered structure, 4) any structure of DNA deviating largely from B form with a capacity to flip over to the B-form are potential targets for the DNase I enzymic probes in naked DNA.
Resumo:
High-temperature superconductivity constitutes the most sensational discovery of recent times. Since these new superconductors are complex metal oxides, chemistry has had a big role to play in the investigations. For the first time, stoichiometry, structure, bonding, and such chemical factors have formed central themes in superconductivity, an area traditionally dominated by physicists. These oxide superconductors have given a big boost to solid-state chemistry.
Resumo:
The role of spermine in inducing A-DNA conformation in deoxyoligonucleotides has been studied using CCGG and GGCC as model sequences. It has been found that while CCGG adopts an alternating B-DNA conformation in low salt solution at low temperature, addition of spermine to this medium induces a B --greater than A transition. In contrast, the A-DNA-like structure of GGCC in low salt solution at low temperature does not change under the influence of spermine. This suggests a sequence-dependent behaviour of spermine. Further these results suggest that the A-DNA conformation observed in the crystals of d(iCCGG) and d(GGCC)2 might have been due to the presence of spermine in the crystallization cocktail.
Resumo:
The special magnetotransport properties of hole doped manganese perovskites originate from a complex interplay among structural, magnetic and electronic degree of freedom. In this picture the local atomic structure around Mn ions plays a special role and this is the reason why short range order techniques like X-ray absorption spectroscopy (XAS) have been deeply exploited for studying these compounds. The analysis of near edge region features (XANES) of XAS spectra can provide very fine details of the local structure around Mn, complementary to the EXAFS, so contributing to the full understanding of the peculiar physical properties of these materials. Nevertheless the XANES analysis is complicated by the large amount of structural and electronic details involved making difficult the quantitative interpretation.This work exploits the recently developed MXAN code to achieve a full structural refinement of the Mn K edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3, in which the Mn ions are present only in one charge state as Mn3+ and Mn4+ respectively. The good agreement between the results derived from the analysis of near edge and extended region of the XAS spectra demonstrates that a quantitative picture of the local structure call be obtained from structural refinement of Mn K edge XANES data in these crystalline compounds. The XANES analysis offers, in addition.. the possibility to directly achieve information on the topology of local atomic structure around the absorber not directly achievable from EXAFS.