948 resultados para statistical methods
Resumo:
"October 1967."
Resumo:
"Issued December 1964."
Resumo:
MSC subject classification: 65C05, 65U05.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
The microabrasion technique of enamel consists of selectively abrading the discolored areas or causing superficial structural changes in a selective way. In microabrasion technique, abrasive products associated with acids are used, and the evaluation of enamel roughness after this treatment, as well as surface polishing, is necessary. This in-vitro study evaluated the enamel roughness after microabrasion, followed by different polishing techniques. Roughness analyses were performed before microabrasion (L1), after microabrasion (L2), and after polishing (L3).Thus, 60 bovine incisive teeth divided into two groups were selected (n=30): G1- 37% phosphoric acid (37%) (Dentsply) and pumice; G2- hydrochloric acid (6.6%) associated with silicon carbide (Opalustre - Ultradent). Thereafter, the groups were divided into three sub-groups (n=10), according to the system of polishing: A - Fine and superfine granulation aluminum oxide discs (SofLex 3M); B - Diamond Paste (FGM) associated with felt discs (FGM); C - Silicone tips (Enhance - Dentsply). A PROC MIXED procedure was applied after data exploratory analysis, as well as the Tukey-Kramer test (5%). No statistical differences were found between G1 and G2 groups. L2 differed statistically from L1 and showed superior amounts of roughness. Differences in the amounts of post-polishing roughness for specific groups (1A, 2B, and 1C) arose, which demonstrated less roughness in L3 and differed statistically from L2 in the polishing system. All products increased enamel roughness, and the effectiveness of the polishing systems was dependent upon the abrasive used.
Resumo:
PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.
Resumo:
Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes. Methods: Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries. Results: Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues. Conclusion: To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor.
Resumo:
This article considers alternative methods to calculate the fair premium rate of crop insurance contracts based on county yields. The premium rate was calculated using parametric and nonparametric approaches to estimate the conditional agricultural yield density. These methods were applied to a data set of county yield provided by the Statistical and Geography Brazilian Institute (IBGE), for the period of 1990 through 2002, for soybean, corn and wheat, in the State of Paran. In this article, we propose methodological alternatives to pricing crop insurance contracts resulting in more accurate premium rates in a situation of limited data.
Resumo:
A stability-indicating high-performance liquid chromatographic (HPLC) and a second-order derivative spectrophotometric (UVDS) analytical methods were validated and compared for determination of simvastatin in tablets. The HPLC method was performed with isocratic elution using a C18 column and a mobile phase composed of methanol:acetonitrile:water (60:20:20, v/v/v) at a flow rate of 1.0 ml/min. The detection was made at 239 nm. In UVDS method, methanol and water were used in first dilution and distilled water was used in consecutive dilutions and as background. The second-order derivative signal measurement was taken at 255 nm. Analytical curves showed correlation coefficients > 0.999 for both methods. The quantitation limits (QL) were 2.41 mu g/ml for HPLC and 0.45 mu g/ml for UVDS, respectively. Intra and inter-day relative standard deviations were < 2.0 %. Statistical analysis with t- and F-tests are not exceeding their critical values demonstrating that there is no significant difference between the two methods at 95 % confidence level.
Resumo:
Hydrodynamic studies were conducted in a semi-cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60 degrees and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/U-ms from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst`s Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.
Resumo:
OBJECTIVE: To describe variation in all cause and selected cause-specific mortality rates across Australia. METHODS: Mortality and population data for 1997 were obtained from the Australian Bureau of Statistics. All cause and selected cause-specific mortality rates were calculated and directly standardised to the 1997 Australian population in 5-year age groups. Selected major causes of death included cancer, coronary artery disease, cerebrovascular disease, diabetes, accidents and suicide. Rates are reported by statistical division, and State and Territory. RESULTS: All cause age-standardised mortality was 6.98 per 1000 in 1997 and this varied 2-fold from a low in the statistical division of Pilbara, Western Australia (5.78, 95% confidence interval 5.06-6.56), to a high in Northern Territory-excluding Darwin (11.30, 10.67-11.98). Similar mortality variation (all p<0.0001) exists for cancer (1.01-2.23 per 1000) and coronary artery disease (0.99-2.23 per 1000), the two biggest killers. Larger variation (all p<0.0001) exists for cerebrovascular disease (0.7-11.8 per 10,000), diabetes (0.7-6.9 per 10,000), accidents (1.7-7.2 per 10,000) and suicide (0.6-3.8 per 10,000). Less marked variation was observed when analysed by State and Territory. but Northern Territory consistently has the highest age-standardised mortality rates. CONCLUSIONS: Analysed by statistical division, substantial mortality gradients exist across Australia, suggesting an inequitable distribution of the determinants of health. Further research is required to better understand this heterogeneity.
Resumo:
Objective: The aim of this article is to propose an integrated framework for extracting and describing patterns of disorders from medical images using a combination of linear discriminant analysis and active contour models. Methods: A multivariate statistical methodology was first used to identify the most discriminating hyperplane separating two groups of images (from healthy controls and patients with schizophrenia) contained in the input data. After this, the present work makes explicit the differences found by the multivariate statistical method by subtracting the discriminant models of controls and patients, weighted by the pooled variance between the two groups. A variational level-set technique was used to segment clusters of these differences. We obtain a label of each anatomical change using the Talairach atlas. Results: In this work all the data was analysed simultaneously rather than assuming a priori regions of interest. As a consequence of this, by using active contour models, we were able to obtain regions of interest that were emergent from the data. The results were evaluated using, as gold standard, well-known facts about the neuroanatomical changes related to schizophrenia. Most of the items in the gold standard was covered in our result set. Conclusions: We argue that such investigation provides a suitable framework for characterising the high complexity of magnetic resonance images in schizophrenia as the results obtained indicate a high sensitivity rate with respect to the gold standard. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The monitoring of infection control indicators including hospital-acquired infections is an established part of quality maintenance programmes in many health-care facilities. However, surveillance data use can be frustrated by the infrequent nature of many infections. Traditional methods of analysis often provide delayed identification of increasing infection occurrence, placing patients at preventable risk. The application of Shewhart, Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) statistical process control charts to the monitoring of indicator infections allows continuous real-time assessment. The Shewhart chart will detect large changes, while CUSUM and EWMA methods are more suited to recognition of small to moderate sustained change. When used together, Shewhart and EWMA methods are ideal for monitoring bacteraemia and multiresistant organism rates. Shewhart and CUSUM charts are suitable for surgical infection surveillance.
Resumo:
This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.
Resumo:
The effect of number of samples and selection of data for analysis on the calculation of surface motor unit potential (SMUP) size in the statistical method of motor unit number estimates (MUNE) was determined in 10 normal subjects and 10 with amyotrophic lateral sclerosis (ALS). We recorded 500 sequential compound muscle action potentials (CMAPs) at three different stable stimulus intensities (10–50% of maximal CMAP). Estimated mean SMUP sizes were calculated using Poisson statistical assumptions from the variance of 500 sequential CMAP obtained at each stimulus intensity. The results with the 500 data points were compared with smaller subsets from the same data set. The results using a range of 50–80% of the 500 data points were compared with the full 500. The effect of restricting analysis to data between 5–20% of the CMAP and to standard deviation limits was also assessed. No differences in mean SMUP size were found with stimulus intensity or use of different ranges of data. Consistency was improved with a greater sample number. Data within 5% of CMAP size gave both increased consistency and reduced mean SMUP size in many subjects, but excluded valid responses present at that stimulus intensity. These changes were more prominent in ALS patients in whom the presence of isolated SMUP responses was a striking difference from normal subjects. Noise, spurious data, and large SMUP limited the Poisson assumptions. When these factors are considered, consistent statistical MUNE can be calculated from a continuous sequence of data points. A 2 to 2.5 SD or 10% window are reasonable methods of limiting data for analysis. Muscle Nerve 27: 320–331, 2003