897 resultados para spatio-temporal variation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The type of tillage and crop systems used can either degrade or cause a recovery of the structure of agricultural soils. The objective of this study was to determine the structural stability of the soil using mean weight diameter (MWD) of soil aggregates in three different periods of a succession of crops consisting of beans/cover plants/maize under no tillage (NT) and conventional tillage (CT) management systems. Soils were sampled at 0- to 5-cm and 5- to 15-cm depths in three periods (P1, P2, P3): 1) November 2002 (spring/summer), 2) April 2003 (beginning of autumn), and 3) December 2003 (end of spring/beginning of summer). Aggregate stability was determined by wet sieving. The effects of the tillage systems, vegetal residues, and sampling depths on the structural stability of the aggregates were assessed and then related to organic matter (OM) contents. Aggregate stability showed temporal variation as a function of OM contents and sampling period. No tillage led to high MWD values in all study periods. The lowest MWD values and OM contents were observed 4 months after the management of the residues of cover plants. This finding is consistent with the fact that at the time of the samplings, most of the OM had already mineralized. The residues of sunn-hemp, millet, and spontaneous vegetation showed similar effects on soil aggregate stability.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Rain acidity may be ascribed to emissions from power station stacks, as well as emissions from other industry, biomass burning, maritime influences, agricultural influences, etc. Rain quality data are available for 30 sites in the South African interior, some from as early as 1985 for up to 14 rainfall seasons, while others only have relatively short records. The article examines trends over time in the raw and volume weighted concentrations of the parameters measured, separately for each of the sites for which sufficient data are available. The main thrust, however, is to examine the inter-relationship structure between the concentrations within each rain event (unweighted data), separately for each site, and to examine whether these inter-relationships have changed over time. The rain events at individual sites can be characterized by approximately eight combinations of rainfall parameters (or rain composition signatures), and these are common to all sites. Some sites will have more events from one signature than another, but there appear to be no signatures unique to a single site. Analysis via factor and cluster analysis, with a correspondence analysis of the results, also aid interpretation of the patterns. This spatio-temporal analysis, performed by pooling all rain event data, irrespective of site or time period, results in nine combinations of rainfall parameters being sufficient to characterize the rain events. The sites and rainfall seasons show patterns in these combinations of parameters, with some combinations appearing more frequently during certain rainfall seasons. In particular, the presence of the combination of low acetate and formate with high magnesium appears to be increasing in the later rainfall seasons, as does this combination together with calcium, sodium, chloride, potassium and fluoride. As expected, sites close together exhibit similar signatures. Copyright © 2002 John Wiley & Sons, Ltd.
Resumo:
Females of the mangrove crab Ucides cordatus were collected in a monthly basis along a 2-year period at the mangrove areas of Iguape, SP, Brazil. Ovigerous individuals were measured (CW, carapace width) and weighed (WW, wet weight). Each brood was weighed (WWE, wet weight of eggs), dried (DWE, dry weight of eggs) and the number of eggs (EN) was recorded. Scatter plots for the relationships EN/CW, EN/WW and EN/WWE were produced, and the data were subjected to regression analysis. Relative average fecundity (F 1) was calculated in different seasons and compared to verify if there were any temporal variation of reproductive intensity. Fecundity in U. cordatus varied from 36.081 to 250.566 eggs according to the size-dependent relationship EN = 15.27CW 2.24 (N = 66; R 2 = 0.69; p<0.001). The other expressions obtained for the relationships were: EN = 3797.6WW 0.813 (N = 56; R 2 = 0.72; p<0.001); EN = 29226WWE 0.775 (N = 54; R 2 = 0.70; p<0.001); and EN = 1093586DWE 0.769 (N = 66; R 2 = 0.86; p<0.001). Ovigerous females were found only during spring and summer, and relative average fecundity differed between these seasons. Relative average fecundity was higher in spring and relative frequency of ovigerous females was higher during summer. Overall reproductive intensity was similar between these seasons. The observed trends are regarded to be related to temperature and photoperiod variations.
Resumo:
Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.
Resumo:
When the food supply flnishes, or when the larvae of blowflies complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as post-feeding larval dispersal. Based on experimental data of the Initial and final configuration of the dispersion, the reproduction of such spatio-temporal behavior is achieved here by means of the evolutionary search for cellular automata with a distinct transition rule associated with each cell, also known as a nonuniform cellular automata, and with two states per cell in the lattice. Two-dimensional regular lattices and multivalued states will be considered and a practical question is the necessity of discovering a proper set of transition rules. Given that the number of rules is related to the number of cells in the lattice, the search space is very large and an evolution strategy is then considered to optimize the parameters of the transition rules, with two transition rules per cell. As the parameters to be optimized admit a physical interpretation, the obtained computational model can be analyzed to raise some hypothetical explanation of the observed spatiotemporal behavior. © 2006 IEEE.
Resumo:
When dealing with spatio-temporal simulations of load growth inside a service zone, one of the most important problems faced by a Distribution Utility is how to represent the different relationships among different areas. A new load in a certain part of the city could modify the load growth in other parts of the city, even outside of its radius of influence. These interactions are called Urban Dynamics. This work aims to discuss how to implement Urban Dynamics considerations into the spatial electric load forecasting simulations using multi-agent simulations. To explain the approach, three examples are introduced, including the effect of an attraction load, the effect of a repulsive load, and the effect of several attraction/repulsive loads at the same time when considering the natural load growth. © 2012 IEEE.
Resumo:
This study focused on representing spatio-temporal patterns of fungal dispersal using cellular automata. Square lattices were used, with each site representing a host for a hypothetical fungus population. Four possible host states were allowed: resistant, permissive, latent or infectious. In this model, the probability of infection for each of the healthy states (permissive or resistant) in a time step was determined as a function of the host's susceptibility, seasonality, and the number of infectious sites and the distance between them. It was also assumed that infected sites become infectious after a pre-specified latency period, and that recovery is not possible. Several scenarios were simulated to understand the contribution of the model's parameters and the spatial structure on the dynamic behaviour of the modelling system. The model showed good capability for representing the spatio-temporal pattern of fungus dispersal over planar surfaces. With a specific problem in mind, the model can be easily modified and used to describe field behaviour, which can contribute to the conservation and development of management strategies for both natural and agricultural systems. © 2012 Elsevier B.V.
Resumo:
Aims: To evaluate the spatio-temporal variables of gait and the isometric muscle strength component of the ankle in patients with peripheral diabetic neuropathy. Also, verify the relationship between these variables and gait parameters. Methods: This study involved 25 diabetic peripheral neuropathy (DPN) participants (62.4 ± 8.36 years) and 27 age-matched healthy control individuals (64.48 ± 6.21 years). The assessment of the spatio-temporal parameters of gait was performed using an electronic baropodometry treadmill. Prior to the collection data, each participant was instructed to walk on the treadmill in her/his habitual self-selected speed. Results: Diabetic neuropathy group showed impairment of gait, with a smaller stride and length speed of the cycle, and increased duration of support time. Restricted dorsiflexion mobility and increased plantarflexion mobility were found, with a decrease in muscle strength of the dorsiflexors and plantiflexors. There was a significant relationship between plantiflexor muscle strength and the length and speed of the gait cycle. Also the muscle strengths of the plantiflexors and dorsiflexors, and the range of motion of dorsiflexion were predictors of gait performance. Conclusions: The ankle, muscle strength and ankle mobility variables could explain changes in gait speed and range of motion in patients with DPN, allowing for the application of preventive strategies. © 2012 Elsevier Ltd.
Resumo:
We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.
Resumo:
Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In flowering plants, alternative oxidase (Aox) is encoded by 3-5 genes distributed in 2 subfamilies (Aox1 and Aox2). In several species only Aox1 is reported as a stress-responsive gene, but in the leguminous Vigna unguiculata Aox2b is also induced by stress. In this work we investigated the Aox genes from two leguminous species of the Medicago genus (Medicago sativa and Medicago truncatula) which present one Aox1, one Aox2a and an Aox2b duplication (named here Aox2b1 and Aox2b2). Expression analyses by semi-quantitative RT-PCR in M. sativa revealed that Aox1, Aox2b1 and Aox2b2 transcripts increased during seed germination. Similar analyses in leaves and roots under different treatments (SA, PEG, H2O2 and cysteine) revealed that these genes are also induced by stress, but with peculiar spatio-temporal differences. Aox1 and Aox2b1 showed basal levels of expression under control conditions and were induced by stress in leaves and roots. Aox2b2 presented a dual behavior, i.e., it was expressed only under stress conditions in leaves, and showed basal expression levels in roots that were induced by stress. Moreover, Aox2a was expressed at higher levels in leaves and during seed germination than in roots and appeared to be not responsive to stress. The Aox expression profiles obtained from a M. truncatula microarray dataset also revealed a stress-induced co-expression of Aox1, Aox2b1 and Aox2b2 in leaves and roots. These results reinforce the stress-inducible co-expression of Aox1/Aox2b in some leguminous plants. Comparative genomic analysis indicates that this regulation is linked to Aox1/Aox2b proximity in the genome as a result of the gene rearrangement that occurred in some leguminous plants during evolution. The differential expression of Aox2b1/2b2 suggests that a second gene has been originated by recent gene duplication with neofunctionalization. © 2013 Elsevier GmbH. All rights reserved.
Resumo:
Changes to the structure of the phytoplankton community and to the physical and chemical variables of the water were investigated in oxbow lakes with different levels of connection to a tropical river and subject to annual hydrological pulse variations. The selected lentic environments are located at the mouth region of the main tributary in a reservoir built for water storage and electric power generation. The temporal variation of phytoplankton in the studied lentic environments can be attributed mainly to the hydrological level of the river. A similar variation pattern of the ecological attributes was observed in the structure of the phytoplankton community in the connected lakes and Paranapanema River, evidencing the high degree of association that the lacustrine systems maintain with the river. The highest values of richness and diversity for connected environments were observed at the end of the emptying period and in the drought. However, considering the isolated lake, the highest values of these attributes were recorded during the flooding period. © 2013 Springer Science+Business Media Dordrecht.