991 resultados para spatial error
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
ABSTRACT Precision agriculture adoption in Brazilian apple orchards is still incipient. This study aimed at evaluating the spatial variability of certain soil properties as soil density, soil penetration resistance, electrical conductivity, yield, and fruit quality in an apple orchard through digital mapping, as well as assessing the correlation between these factors by means of geostatistics, establishing management zones. Forty representative points were set within 2.5 hectares of apple orchard, wherein soil samples were collected and analyzed, besides measurements of fruit quality (Brix degree, size or diameter, pulp firmness and color) to generate an overall index quality. We concluded that the fruit quality indexes, when isolated, did not show strong spatial dependence, unlike the index of fruit quality (FQI), derived from a combination of these parameters, allowing orchard planning according to management zones based on quality.
Resumo:
ABSTRACT The present study aims to present the main concepts of the sugarcane straw to energy planning. Throughout the study, the subject is contextualized highlighting broader aspects of sustainability, which is considered the main driver towards agro-energy modernization. Concerning sugarcane straw, we first evaluated its availability regarding technical and economic aspects, and then it summarized the straw production chain for energy supply purposes. As a proposal to support agro-energy planning, it is presented some spatial tools that have been barely used in the Brazilian energy planning context so far. Therefore, working on straw to electricity associated with supply chain basis, we developed a conceptual model to spatially assess this bioenergy system. Using the model proposed, it is described the whole supply chain at state level, which accounted the potential of a single mill to explore straw, as well as main costs associated with straw acquisition, investments on the straw recovery routes and electricity transmission. Bearing these concepts in mind, it is fully believed that spatial analysis can bring important information for agro-energy action plans.
Resumo:
ABSTRACT This study aimed to compare thematic maps of soybean yield for different sampling grids, using geostatistical methods (semivariance function and kriging). The analysis was performed with soybean yield data in t ha-1 in a commercial area with regular grids with distances between points of 25x25 m, 50x50 m, 75x75 m, 100x100 m, with 549, 188, 66 and 44 sampling points respectively; and data obtained by yield monitors. Optimized sampling schemes were also generated with the algorithm called Simulated Annealing, using maximization of the overall accuracy measure as a criterion for optimization. The results showed that sample size and sample density influenced the description of the spatial distribution of soybean yield. When the sample size was increased, there was an increased efficiency of thematic maps used to describe the spatial variability of soybean yield (higher values of accuracy indices and lower values for the sum of squared estimation error). In addition, more accurate maps were obtained, especially considering the optimized sample configurations with 188 and 549 sample points.
Resumo:
The general goal of the present work was to study whether spatial perceptual asymmetry initially observed in linguistic dichotic listening studies is related to the linguistic nature of the stimuli and/or is modality-specific, as well as to investigate whether the spatial perceptual/attentional asymmetry changes as a function of age and sensory deficit via praxis. Several dichotic listening studies with linguistic stimuli have shown that the inherent perceptual right ear advantage (REA), which presumably results from the left lateralized linguistic functions (bottom-up processes), can be modified with executive functions (top-down control). Executive functions mature slowly during childhood, are well developed in adulthood, and decline as a function of ageing. In Study I, the purpose was to investigate with a cross-sectional experiment from a lifespan perspective the age-related changes in top-down control of REA for linguistic stimuli in dichotic listening with a forced-attention paradigm (DL). In Study II, the aim was to determine whether the REA is linguistic-stimulus-specific or not, and whether the lifespan changes in perceptual asymmetry observed in dichotic listening would exist also in auditory spatial attention tasks that put load on attentional control. In Study III, using visual spatial attention tasks, mimicking the auditory tasks applied in Study II, it was investigated whether or not the stimulus-non-specific rightward spatial bias found in auditory modality is a multimodal phenomenon. Finally, as it has been suggested that the absence of visual input in blind participants leads to improved auditory spatial perceptual and cognitive skills, the aim in Study IV was to determine, whether blindness modifies the ear advantage in DL. Altogether 180-190 right-handed participants between 5 and 79 years of age were studied in Studies I to III, and in Study IV the performance of 14 blind individuals was compared with that of 129 normally sighted individuals. The results showed that only rightward spatial bias was observed in tasks with intensive attentional load, independent of the type of stimuli (linguistic vs. non-linguistic) or the modality (auditory vs. visual). This multimodal rightward spatial bias probably results from a complex interaction of asymmetrical perceptual, attentional, and/or motor mechanisms. Most importantly, the strength of the rightward spatial bias changed as a function of age and augmented praxis due to sensory deficit. The efficiency of the performance in spatial attention tasks and the ability to overcome the rightward spatial bias increased during childhood, was at its best in young adulthood, and decreased as a function of ageing. Between the ages of 5 and 11 years probably at first develops movement and impulse control, followed by the gradual development of abilities to inhibit distractions and disengage attention. The errors especially in bilateral stimulus conditions suggest that a mild phenomenon resembling extinction can be observed throughout the lifespan, but especially the ability to distribute attention to multiple targets simultaneously decreases in the course of ageing. Blindness enhances the processing of auditory bilateral linguistic stimuli, the ability to overcome a stimulus-driven laterality effect related to speech sound perception, and the ability to direct attention to an appropriate spatial location. It was concluded that the ability to voluntarily suppress and inhibit the multimodal rightward spatial bias changes as a function of age and praxis due to sensory deficit and probably reflects the developmental level of executive functions.
Resumo:
ABSTRACTObjective:to assess the impact of the shift inlet trauma patients, who underwent surgery, in-hospital mortality.Methods:a retrospective observational cohort study from November 2011 to March 2012, with data collected through electronic medical records. The following variables were statistically analyzed: age, gender, city of origin, marital status, admission to the risk classification (based on the Manchester Protocol), degree of contamination, time / admission round, admission day and hospital outcome.Results:during the study period, 563 patients injured victims underwent surgery, with a mean age of 35.5 years (± 20.7), 422 (75%) were male, with 276 (49.9%) received in the night shift and 205 (36.4%) on weekends. Patients admitted at night and on weekends had higher mortality [19 (6.9%) vs. 6 (2.2%), p=0.014, and 11 (5.4%) vs. 14 (3.9%), p=0.014, respectively]. In the multivariate analysis, independent predictors of mortality were the night admission (OR 3.15), the red risk classification (OR 4.87), and age (OR 1.17).Conclusion:the admission of night shift and weekend patients was associated with more severe and presented higher mortality rate. Admission to the night shift was an independent factor of surgical mortality in trauma patients, along with the red risk classification and age.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
This article deals with a contour error controller (CEC) applied in a high speed biaxial table. It works simultaneously with the table axes controllers, helping them. In the early stages of the investigation, it was observed that its main problem is imprecision when tracking non-linear contours at high speeds. The objectives of this work are to show that this problem is caused by the lack of exactness of the contour error mathematical model and to propose modifications in it. An additional term is included, resulting in a more accurate value of the contour error, enabling the use of this type of motion controller at higher feedrate. The response results from simulated and experimental tests are compared with those of common PID and non-corrected CEC in order to analyse the effectiveness of this controller over the system. The main conclusions are that the proposed contour error mathematical model is simple, accurate, almost insensible to the feedrate and that a 20:1 reduction of the integral absolute contour error is possible.
Resumo:
Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.
Resumo:
A study on the spatial distribution of the major weeds in maize was carried out in 2007 and 2008 in a field located in Golegã (Ribatejo region, Portugal). The geo-referenced sampling focused on 150 points of a 10 x 10 m mesh covering an area of 1.5 ha, before herbicide application and before harvest. In the first year, 40 species (21 botanical families) were identified at seedling stage and only 22 during the last observation. The difference in species richness can be attributed to maize monoculture favouring reduction in species number. Three of the most representative species were selected for the spatial distribution analysis: Solanum nigrum, Chenopodium album and Echinochloa crus-galli. The three species showed an aggregated spatial pattern and spatial stability over both years, although the herbicide effect is evident in the distribution of some of them in the space. These results could be taken into account when planning site-specific treatments in maize.