769 resultados para south-eastern Brazilian coast
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.
Resumo:
The spread of invasive organisms is one of the greatest threats to ecosystems and biodiversity worldwide. Understanding the evolutionary and ecological factors responsible for the transport, introduction, establishment and spread of invasive species will assist the development of control strategies. The New Zealand mudsnail, Potamopyrgus antipodarum (Gray 1843) (Gastropoda: Hydrobiidae), is a global freshwater invader, with populations established in Europe, Asia, the Americas and Australia. While sexual and asexual P. antipodarum coexist in the native range, invasive populations reproduce by parthenogenesis, producing dense populations that compete for resources with native species. Potamopyrgus antipodarum is a natural model system for the study of evolutionary and ecological processes underlying invasion. This thesis assesses the invasion history, genetic diversity and ecology of P. antipodarum in Australia, with particular focus on: a) potential source populations, b) distribution and structure of populations, and c) species traits related to the establishment, persistence and spread of invasive P. antipodarum. Genetic analyses were carried out on specimens collected for this study from New Zealand and Australia, along with existing museum samples. In combination with published data, the analyses revealed low genetic diversity among and within invasive populations in south-eastern Australia, relative to New Zealand populations. Phylogenetic relationships inferred from mitochondrial sequences indicated that the Australian populations belong to clades dominated by parthenogenetic haplotypes that are known to be present in Europe and the US. These ‘invasive clades’ are likely to originate from the North Island of New Zealand, and suggest a role for selection in determining genetic composition of invasive populations. The genotypic diversity of Australian P. antipodarum was low, with few, closely related clones distributed across south-eastern Australia. The pattern of clone distribution was not consistent with any assessed geographical or abiotic factors; instead a few, widely-distributed clones were present in high frequencies at most sites. Differences in clone frequencies were found, which may indicate differential success of clonal lineages. A range of traits have been proposed as facilitators of invasion success, and within-species variation in these traits can promote differential success of genotypes. Using laboratory-based experiments, the performance of the three most common Australian clones was tested across a suite of invasion-relevant traits. Ecologically-relevant variation in traits was found among the clones. These differences may have determined the spatial distribution of clones, and may continue to do so into the future. This thesis found that the P. antipodarum invasion of Australia is the result of few introductions of a small number of globally-invasive genotypes that vary in ecologically-relevant traits. From a source of considerable genetic diversity in the native range, very few genotypes have become invasive. Those that are invasive appear to be very successful at continental scales. These findings highlight a capacity in asexual invaders to successfully invade, and potentially adapt to, a broad range of ecosystems. The P. antipodarum invasion system is amenable to research using combinations of field-based studies, molecular and laboratory approaches, and is likely to yield significant, broadly-applicable insights into invasion.
Resumo:
Most Australian banana production occurs on the north-eastern tropical coast between latitudes 15-18°S, and can experience summer cyclone activity. Damage from severe tropical cyclones has serious impact on banana-based livelihoods. The most significant impacts include immediate loss of production and income for several months, the region-wide synchronization of cropping and the expense of rehabilitating affected plantations. Severe tropical cyclones have directly affected the main production region twice in recent years Tropical Cyclone (TC) Larry (Category 4) in March 2006 and TC Yasi (Category 5) in February 2011. Based on TC Larry experiences, pre- and post-cyclone farm practices were developed to reduce these impacts in future cyclonic events. The main pre-cyclone farm practice focused on maintaining production units and an earlier return to fruit production by partially or completely removing the plant canopy to reduce wind resistance. Post-cyclone farm practices focused on managing the industry-wide crop synchronization using crop timing techniques to achieve a staggered return to cropping by scheduling production to provide continuous fruit supply. With TC Yasi in 2011, some banana producers implemented these practices, allowing them to examine their effectiveness in reducing cyclonic impacts. Additional research and development activities were conducted to refine our understanding of their effectiveness and improve their application for future cyclonic events. Based on these activities and farm-based observations, suggested practice-based management strategies can be developed to help reduce the impact of severe tropical cyclones in the future. Canopy removal maintained banana plants as productive units, and provided earlier but smaller bunches, generating earlier-than-expected income. Queensland producers expressed willingness to adopt canopy removal for future cyclone threats where appropriate, despite its labor-intensiveness. Mechanization would allow larger scale adoption. Implementing a staggered cropping program successfully achieved a consistent, continuous fruit supply after a cyclone impact. Both techniques should be applicable to other cyclone-prone regions.
Resumo:
Australian forest industries have a long history of export trade of a wide range of products from woodchips (for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in temperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe (including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design.