945 resultados para sonicated vesicles
Resumo:
Introduction: Bovine vaccinia virus (VACV) is a well-known zoonotic agent related to exanthemous lesions in skin and mucous membranes of dairy cattle and humans, characterized by the formation of vesicles, pustules and ulcers. Mastitis is one of the most common infectious diseases of dairy herds. Bovine mammary infections are caused mainly by bacterial microorganisms, especially staphylococci. To the best of our knowledge, intramammary coinfection with VACV and Staphylococcus aureus in cows has not been reported previously. Case presentation: During an outbreak of exanthematic bovine VACV infection with animals showing vesicles, pustules and haemorrhagic ulcers on the teats, milk samples were collected for mastitis detection. Conclusion: The present report describes a case of intramammary coinfection by VACV and S. aureus in a bovine VACV outbreak.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper reports the results of a comparative study of the development of the larval Echinococcus multilocularis Leuckart, 1863), and associated tissue reaction in naturally and experimentally infected mammals representing 31 species. The histogenesis of the larval cestode was traced in detail in arvicoline rodents of several species, and interspecific differences were defined. In arvicoline rodents, the developing larva exhibited host-specific characteristics within about a month after infection was established. The tissue reaction in Microtus oeconomus was characterized by the production of a large quantity of detritus around the larva, and by the formation of a thick epithelioid zone. In one subspecies, M. oeconomus innuitus, development of the larva was retarded, and the detrital mass was often calcified; in another, M. oeconomus operarius, the detritus rarely became calcified and the larva proliferated more rapidly. In M. pennsylvanicus, the tissue reaction was minimal, and little detritus was present. The characteristics of the tissue reaction in M. montebelli placed it in an intermediate position between the aforementioned species. In Clethrionomys rutilus, a thin epithelioid zone and an outer zone of loose collagenous fibers composed the adventitial layer; exogenous budding was retarded in this vole. A minimal tissue reaction occurred in Lagurus curtatus. In Lemmus spp., larger cysts were characteristic, but areas of small-cystic proliferation were always present. Similar differences in species or subspecies of Citellus and Dicrostonyx were described. Lesions of alveolar bydatid disease in man also were studied. The invasive growth of the larval cestode in the human liver involves a process comparable to small-cystic proliferation in the natural intermediate hosts. Although the later stages of development of the larval cestode are inhibited in man, exogenous proliferation of vesicles continues for the life of the host. The lesion in man was compared with a morphologically similar formation produced by anomalous development of the larval E. granulosus in the bovine liver. The latter is distinguished by the absence of areas of small-cystic proliferation. Non-echinococcal lesions found in the tissues studied, some of which resembled foci caused by the larval E. multilocularis, were briefly discussed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.
Resumo:
Leaves of Cassia hoffmannseggii, a wild fabaceous species found in the Atlantic Forest, with a severe mosaic symptom were collected in Pernambuco State, Brazil. By transmission electron microscopy, two types of virus particles were found: the first was recognized as particles of a potyvirus, which was later identified as Cowpea aphid-borne mosaic virus; and the second was isometric and present in high concentration. The observation of vesicles at the periphery of chloroplasts suggested a tymovirus infection, which was confirmed by subsequent assays. A serological assay against several tymovirus antisera resulted in positive reaction of this tymo-like virus with an antiserum of Passion fruit yellow mosaic virus. By means of RT-PCR and using degenerated primers for the conserved region of RNA-dependent RNA polymerase (RdRp) gene of tymoviruses, a specific DNA fragment was amplified and sequenced. Based on this sequence, a specific forward primer was synthesized and successfully used to amplify the 3' terminal genome region, containing the partial RdRp gene and the complete coat protein (CP) sequences. The CP was 188 amino acids (aa) long, and the highest CP aa identity was observed with Kennedya yellow mosaic virus (61 %). Based on the current ICTV demarcation criterion, this isolate was considered as a distinct tymovirus and tentatively named as Cassia yellow mosaic-associated virus.
Resumo:
We examined the interaction of the cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) with Langmuir monolayers of zwitterionic (dipalmitoyl phosphatidylcholine, DPPC, and dipalmitoyl phosphatidylethanolamine, DPPE) and negatively charged phospholipids (dipalmitoyl phosphatidic acid, DPPA, and dipalmitoyl phosphatidylglycerol, DPPG). Both surface pressure and surface potential isotherms became more expanded upon addition of TRP3 (DPPE similar to DPPC << DPPA < DPPG). The stronger interaction with negatively charged phospholipids agrees with data for vesicles and planar lipid bilayers, and with AMPs greater activity against bacterial membranes versus mammalian cell membranes. Considerable expansion of negatively charged monolayers occurred at 10 and 30 mol% TRP3, especially at low surface pressure. Moreover, a difference was observed between PA and PG, demonstrating that the interaction, besides being modulated by electrostatic interactions, displays specificity with regard to headgroup, being more pronounced in the case of PG, present in large quantities in bacterial membranes. In previous studies, it was proposed that the peptide acts by a toroidal pore-like mechanism [1,2]. Considering the evidence from the literature that PG shows a propensity to form a positive curvature as do toroidal pores, the observation of TRP3's preference for the PG headgroup and the dramatic increase in area promoted by this interaction represent further support for the toroidal pore mechanism of action proposed for TRP3. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coil, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAD) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut CAD hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C265) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 angstrom, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We aim in this study to characterize the effect of cations and polycations on the formation of hybrid bilayer membranes (HBMs), especially those that mimic the inner mitochondrial membrane (IMM), with a proper composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin (CL) adsorbed on an alkanethiol monolayer. HBMs are versatile membrane mimetics that show promising results in sensor technology. Its formation depends on the fusion of vesicles on hydrophobic surfaces, a process that is not well understood at the molecular level. Our results showed to which extend and in which condition the presence of cations and polycations facilitate the formation of HBMs. The required time for lipid layer formation was reduced several times and the lipid layer reaches the expected thickness of 19.5 +/- 1.8 angstrom, in contrast to only 2 +/- 1.5 angstrom usually observed in the absence of cations. In the presence of specific concentrations of spermine and Ca2+ the amount of adsorbed phospholipids on the thiol layer increased nearly 70% compared to that observed when Na+ was used at concentrations 10 times higher. Divalent cations and polycations adsorb specifically on the lipid headgroups destabilizing the hydration forces, facilitating the process of vesicle fusion and formation of lipid monolayers. The concepts and conditions described in the manuscript will certainly help the development of the field of membrane biosensors. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Liposomes have been employed as potential drug carriers. However, after their in vivo administration, they can be destabilized by proteins of complement system, contributing to the clearance of vesicles from blood circulation. Antioxidant flavonoids such as quercetin have been reported to be beneficial to human health, but their low water solubility and bioavailability limit their enteric administration. Therefore, the development of appropriate flavonoid-carriers could be of great importance to drug therapy. The aim of the present study was to evaluate the activation of human complement system proteins by liposomes composed of soya phosphatidylcholine (SPC) and cholesterol (CHOL) or cholesteryl ethyl ether (CHOL-OET) loaded with quercetin or not. The consumption of complement, via classical (CP) and alternative (AP) pathways, by different vesicles was evaluated using a hemolytic assay and quantitative determination of iC3b and natural antibodies deposited on empty liposomal surfaces by ELISA. The main results showed that empty liposomes composed of large amounts of CHOL consumed more complement components than the others for both CP and AP. Furthermore, replacement of CHOL with CHOL-OET reduced complement consumption via both CP and AP. Incorporation of quercetin did not change CP and AP consumption. Deposition of iC3b, IgG and IgM in vesicles composed of SPC: CHOL-OET at a molar ratio of 1.5:1 was lower compared to the others. Taken together, these observations suggest that liposomes composed of SPC: CHOL-OET at a molar ratio of 1.5:1 are the most appropriate among the vesicles studied herein to be used as a drug carrier system in further investigations.
Resumo:
Steindachneridion parahybae is a freshwater catfish endemic to the Paraiba do Sul River and is classified as an endangered Neotropical species. An increasing number of conservation biologists are incorporating morphological and physiological research data to help conservation managers in rescue these endangered species. This study investigated the embryonic and larval development of S. parahybae in captivity, with emphasis in major events during the ontogeny of S. parahybae. Broodstocks were artificially induced to reproduce, and the extrusion occurred 200-255 degree-hours after hormonal induction at 24 degrees C. Larval ontogeny was evaluated every 10 minutes under microscopic/stereomicroscopic using fresh eggs samples. The main embryogenic development stages were identified: zygote, cleavage, including the morula, blastula, gastrula phase, organogenesis, and hatching. The extruded oocytes showed an average diameter of 1.10 +/- 0.10 mm, and after fertilization and hydration of eggs, the average diameter of eggs increased to about 1.90 +/- 0.60 mm, characterized by a large perivitelline space that persisted up to embryo development, the double chorion, and the poles (animal and vegetative). Cell division started about 2 minutes after fertilization (AF), resulting in 2, 4, 8 (4 x 2 arrangement of cells), 16 (4 x 4), 32 (4 x 8) and 64 (2 x 4 x 8) cells. Furthermore, the blastula and gastrula stages followed after these cells divisions. The closed blastopore occurred at 11 h 20 min AF; following the development, the organogenetic stages were identified and subdivided respectively in: early segmentation phase and late segmentation phase. In the early segmentation phase, there was the establishment of the embryonic axis, and it was possible to distinguish between the cephalic and caudal regions; somites, and the optic vesicles developed about 20 h AF. Total hatching occurred at 54 h AF, and the larvae average length was 4.30 +/- 0.70 mm. Gradual yolk sac reduction was observed during the first two days of larval development. The first feeding occurred at the end of the second day. During the larval phase, cannibalism, heterogeneous larval growth and photophobia were also observed. This information will be important in improving the artificial reproduction protocols of S. parahybae in controlled breeding programs.
Resumo:
Musca domestica larvae present two different digestive chymotryptic activities found in the posterior midgut (PMG): one major soluble activity in the lumen and another minor present in cell membrane fractions. Both soluble and membrane-bound chymotryptic activities have different half lives of thermal inactivation (46 degrees C) in the presence and absence of 10 mM Triton X-100, indicating that they are two different molecular species. Purified soluble chymotryptic activity has pH optimum 7.4 and a molecular mass of 28 kDa in SDS-PAGE. It does not cleave short substrates, such as Suc-F-MCA, preferring longer substrates, such as Suc-AAPF-MCA, with a primary specificity (kcat/Km) for Phe rather than Tyr and Leu residues. In-gel activity revealed a unique band against S-AAPF-MCA with the same migration as purified chymotrypsin. One chymotrypsinogen-like sequence (MdChy1) was sequenced, cloned and recombinantly expressed in Escherichia coli (DE3) Star. MdChy1 is expressed in the proximal posterior midgut (PMG1), as seen by RT-PCR. Expression analysis of other chymotrypsin genes revealed genes expressed at the anterior midgut (AMG) and PMG. Western blot of M. domestica midgut tissues using anti-MdChy1 antiserum showed a single band in samples from AMG and PMG, co-migrating with recombinant and purified enzymes. Immunogold labeling corresponding to Mdchy1 was found in small vesicles (thus indicating exocytosis) and in the lumen of AMG and PMG, corroborating the existence of two similar groups of chymotrypsins. Transcriptomes of M. domestica AMG and whole midgut prepared by pyrosequencing disclosed 41 unique sequences of chymotrypsin-like enzymes (19 probably functional), from which MdChy1 is highly expressed. Phylogenetic reconstruction of Drosophila melanogaster and M. domestica chymotrypsin-like sequences revealed that the chymotrypsin genes expanded before the evolutionary separation of Musca and Drosophila. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: The bovine yolk sac derives from visceral endoderm and its development occurs between days 18-23 of gestation. The study of this membrane is important for comparative data and has already been performed in rodents, sheep and in cattle, especially Bos taunts. In species Bos indicus the yolk sac has not quite been studied and is believed that there are morphological differences between these species. The yolk sac undergoes a process of involution and degeneration during embryonic development and none vestige of it is found in late gestation. The period in which occurs the involution of the yolk sac coincides with the period of increased pregnancy loss in cattle, and changes in the morphology of this membrane may indicate the reasons for such high loss rates. Thus, considering that the yolk sac is important for embryonic circulation and metabolic transmission, besides participating actively in the process of cattle placentation, this study aimed characterize morphologically the involution of the bovine yolk sac. Materials, Methods & Results: The early gestational period was determined between days 20 and 70 post-insemination (p.i), according to the exterior characteristics of embryo/fetus. For macroscopic analyzes the uterus was dissected to expose the fetal membranes and subsequently the embryo/fetus was photographed. The samples were fixed for light microscopy and transmission electron microscopy. The yolk sac that emerges from the ventral part of the embryo was prominent and composed by a central part with two thin peripheral projections of different lengths. The bovine yolk sac with about 9 cm on day 25 p. i. of pregnancy permanently decreased its total length during this study. Histologically, the yolk sac is composed of three cell layers: the mesothelium, the mesenchyme and the endoderm. In mesenchyme are found blood islets. In the endoderm are formed cells invaginations toward the mesenchyme originating small canaliculi. The ultrastructure of yolk cells presented many mitochondria, rough endoplasmic reticulum, vesicles, euchromatin and the presence of two nucleoli, Discussion: The real first blood circulation in the bovine is attached with the development of yolk sac, differently from other membranes, such as the corium, that does not present evidence of vascularization by the age of 20-30 days. The erythroblasts found in the yolk sac are related to vasculogenesis and the process of differentiation of blood cells during the erythropoiesis. It could be observed on the histology of the yolk sac, in embryos of 30-50 days old, the presence of canaliculi and small folds of the epithelium. The canaliculi collapse is associated with the degeneration of the endoderm wall of the yolk sac. The organelles present in the endoderm cells of the yolk sac are associated with the function of protein metabolism and in the exchange of substances between the mesenchyme and the mesothelium, For these findings, could be observed that the yolk sac epithelium is found active until the 50th day of gestation, and thereafter regresses. However, remnants of this membrane may be present until the 70th day, These features may represent a presence of an active chorionvitelline placenta in this period responsible for the maintenance of pregnancy whereas the chorioallantoic placenta is not definitively established.
Resumo:
In this work we examine the interaction between the 13-residue cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) and model membranes of variable lipid composition. The effect on peptide conformational properties was investigated by means of CD (circular dichroism) and fluorescence spectroscopies. Based on the hypothesis that the antibiotic acts through a mechanism involving toroidal pore formation, and taking into account that models of toroidal pores imply the formation of positive curvature, we used large unilamellar vesicles (LUV) to mimic the initial step of peptide-lipid interaction, when the peptide binds to the bilayer membrane, and micelles to mimic the topology of the pore itself, since these aggregates display positive curvature. In order to more faithfully assess the role of curvature, micelles were prepared with lysophospholipids containing (qualitatively and quantitatively) head groups identical to those of bilayer phospholipids. CD and fluorescence spectra showed that, while TRP3 binds to bilayers only when they carry negatively charged phospholipids. binding to micelles occurs irrespective of surface charge, indicating that electrostatic interactions play a less predominant role in the latter case. Moreover, the conformations acquired by the peptide were independent of lipid composition in both bilayers and micelles. However, the conformations were different in bilayers and in micelles, suggesting that curvature has an influence on the secondary structure acquired by the peptide. Fluorescence data pointed to an interfacial location of TRP3 in both types of aggregates. Nevertheless, experiments with a water soluble fluorescence quencher suggested that the tryptophan residues are more accessible to the quencher in micelles than in bilayers. Thus, we propose that bilayers and micelles can be used as models for the two steps of toroidal pore formation. (C) 2011 Elsevier Ireland Ltd. All rights reserved.