976 resultados para soil microbial activity
Resumo:
Salpetrige Säure (HONO) ist eine wichtige Form von reaktivem Stickstoff, die aufgrund ihrer Photolyse zu Stickstoffmonoxid (NO) und dem Hydroxylradikal (OH), sehr kurzlebig ist. Ein genaues Verständnis der Quellen und Senken von HONO ist eine grundlegende Voraussetzung, um dessen Einfluss auf die Umwelt zu beurteilen. Allerdings wird immer noch nach einer starken HONO-Quelle am Tag gesucht und nächtliche HONO-Deposition auf den Boden wurde bisher stets nur postuliert. Diese Dissertation folgt der Zielsetzung die Prozesse der HONO-Aufnahme und Freisetzung von Böden aufzudecken und die zugrunde liegenden Mechanismen zu verstehen.rnUm die Rolle von HONO-Bodenemissionen zu quantifizieren, wurden 17 Böden in einem dynamischen Kammersystem untersucht. Es konnten HONO-Emissionen derselben Größenordnung wie die bereits gut untersuchten NO-Emissionen festgestellt werden. Unerwarteter Weise wurden die stärksten Emissionen bei Böden mit neutralem pH aus ariden und landwirt¬schaftlichen Gebieten beobachtet. Die Temperaturabhängigkeit der Bodenemissionen von HONO und NO führten zu der Annahme einer mikrobiellen Freisetzung von HONO, welche durch Reinkulturexperimente mit dem ammoniumoxidierenden Bakterium Nitrosomonas europaea bestätigt werden konnte. Ein konzeptionelles Model für die Freisetzung reaktiver Stickstoffverbindungen aus Böden in Abhängigkeit des Bodenwassergehaltes wurde um HONO-Emissionen erweitert.rnDurch Nachweise mittels Reinkultur- und Inhibitionsexperimenten konnten weitere Untersuchungen der bakteriellen Freisetzung von HONO aus Böden zeigen, dass innerhalb der bakteriellen Nitrifikation nur ammoniumoxidierende Bakterien zur Emission von HONO fähig sind. Durch kontrolliert initiierte Zelllyse konnte gezeigt werden, dass intrazellulär akkumuliertes Hydroxylamin (NH2OH) für die HONO-Freisetzung verantwortlich sind. Zum ersten Mal wurde NH2OH in der Gasphase nachgewiesen und dass dieses über den gesamten Bodenfeuchtebereich von ammoniumoxidierenden Bakterien freigesetzt wird. Es wurde gezeigt, dass die heterogene Reaktion von NH2OH mit Wasserdampf auf einer Glasperlenoberfläche HONO bildet. Diese Reaktion erklärt die beobachtete Freisetzung von HONO bei niedrigen Bodenfeuchten, da nur dann die Oberfläche zur Reaktion zur Verfügung steht und nicht von Wasser bedeckt ist.rnEine 15N Isotopenmarkierungsmethode wurde entwickelt um isotopenmarkiertes gasförmiges HONO zu messen, was die Untersuchung der Bildungsprozesse von HONO und dessen Rolle in biogeochemischen Zyklen ermöglicht. Die Anwendung dieser neuen Methode auf eine Bodenprobe die mit 15N Harnstoff angereichert und in einem dynamischen Kammersystem untersucht wurde, bestätigt die obigen Ergebnisse einer starken mikrobiellen Beteiligung von Bodenbakterien zur HONO Freisetzung.rnBidirektionale Flüsse von HONO wurden für sechs untersuchte Bodenproben gefunden. Die Richtung der Flüsse hängt dabei vom Umgebungsmischungsverhältnis von HONO und dem Bodenwassergehalt ab. Eine wichtige Größe, die die bidirektionalen Flüsse von HONO beschreibt, ist das „Ökosystem spezifische Kompensationsmischungsverhältnis von HONO“, χcomp. Dieser neue Begriff wurde definiert und eingeführt, da die verschiedenen in den Bodenaustausch von HONO involvierten Prozesse nicht mit dem klassischen Kompensationspunktkonzept kompatibel sind. Die Untersuchungen bestätigen neueste Feldbeobachtungen, dass HONO, welches bei hohen Umgebungsmischungsverhältnissen vom Boden adsorbiert wird, bei niedrigen Mischungsverhält-nissen wieder vom Boden desorbiert wird. Folglich wird nächtlich akkumuliertes HONO tagsüber in eine Quelle für HONO umgewandelt. Vier Prozesse - Verteilung von HONO zwischen Gas- und Flüssigphase nach Henrys Gesetz, bakterielle HONO Bildung aus NH2OH, Adsorption und Desorption von HONO - und deren Dominanz in speziellen Bodenfeuchtebereichen wurden identifiziert. Dadurch wurde ein konzeptionelles Model für die Prozesse, die in Aufnahme und Freisetzung von HONO aus Böden involviert sind, als Funktion der Bodenfeuchte entwickelt.rnZusammenfassend hat diese Dissertation die entscheidenden Prozesse im Austausch von HONO zwischen Boden und Atmosphäre aufgeklärt und den der bakteriellen HONO Bildung zugrunde liegenden Mechanismus aufgedeckt. Es konnte gezeigt werden, dass Böden sowohl eine wichtige Quelle als auch eine Senke für HONO sind und sollten folglich in zukünftigen Feldmessungen stärker berücksichtigt werden.rn
Resumo:
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C:N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.
Resumo:
Mannan-binding lectin (MBL) and ficolins are microbial pattern recognition molecules that activate the lectin pathway of complement. We previously reported the association of MBL deficiency with anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with Crohn's disease (CD). However, ASCA are also frequently found in MBL-proficient CD patients. Here we addressed expression/function of ficolins and MBL-associated serine protease-2 (MASP-2) regarding potential association with ASCA.
Resumo:
Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the detection of xylanolytic enzymes exclusively in larvae (which feed on fungus colonized wood) and not in adults (which feed only on fungi) indicates that only larvae (pre-) digest plant cell wall structures. This implies that in X. saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and fungus cultivation.
Resumo:
Denitrification is an important process of global nitrogen cycle as it removes reactive nitrogen from the biosphere, and acts as the primary source of nitrous oxide (N2O). This thesis seeks to gain better understanding of the biogeochemistry of denitrification by investigating the process from four different aspects: genetic basis, enzymatic kinetics, environmental interactions, and environmental consequences. Laboratory and field experiments were combined with modeling efforts to unravel the complexity of denitrification process under microbiological and environmental controls. Dynamics of denitrification products observed in laboratory experiments revealed an important role of constitutive denitrification enzymes, whose presence were further confirmed with quantitative analysis of functional genes encoding nitrite reductase and nitrous oxide reductase. A metabolic model of denitrification developed with explicit denitrification enzyme kinetics and representation of constitutive enzymes successfully reproduced the dynamics of N2O and N2 accumulation observed in the incubation experiments, revealing important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Field studies demonstrated complex interaction of belowground N2O production, consumption and transport, resulting in two pulse pattern in the surface flux. Coupled soil gas diffusion/denitrification model showed great potential in simulating the dynamics of N2O below ground, with explicit representation of the activity of constitutive denitrification enzymes. A complete survey of environmental variables showed distinct regulation regimes on the denitrification activity from constitutive enzymes and new synthesized enzymes. Uncertainties in N2O estimation with current biogeochemical models may be reduced as accurate simulation of the dynamics of N2O in soil and surface fluxes is possible with a coupled diffusion/denitrification model that includes explicit representation of denitrification enzyme kinetics. In conclusion, denitrification is a complex ecological function regulated at cellular level. To assess the environmental consequences of denitrification and develop useful tools to mitigate N2O emissions require a comprehensive understanding of the regulatory network of denitrification with respect to microbial physiology and environmental interactions.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.
Resumo:
OBJECTIVE: Altered microbiota composition, changes in immune responses and impaired intestinal barrier functions are observed in IBD. Most of these features are controlled by proteases and their inhibitors to maintain gut homeostasis. Unrestrained or excessive proteolysis can lead to pathological gastrointestinal conditions. The aim was to validate the identified protease IBD candidates from a previously performed systematic review through a genetic association study and functional follow-up. DESIGN: We performed a genetic association study in a large multicentre cohort of patients with Crohn's disease (CD) and UC from five European IBD referral centres in a total of 2320 CD patients, 2112 UC patients and 1796 healthy controls. Subsequently, we did an extensive functional assessment of the candidate genes to explore their causality in IBD pathogenesis. RESULTS: Ten single nucleotide polymorphisms (SNPs) in four genes were significantly associated with CD: CYLD, USP40, APEH and USP3. CYLD was the most significant gene with the intronically located rs12324931 the strongest associated SNP (pFDR=1.74e-17, OR=2.24 (1.83 to 2.74)). Five SNPs in four genes were significantly associated with UC: USP40, APEH, DAG1 and USP3. CYLD, as well as some of the other associated genes, is part of the ubiquitin proteasome system (UPS). We therefore determined if the IBD-associated adherent-invasive Escherichia coli (AIEC) can modulate the UPS functioning. Infection of intestinal epithelial cells with the AIEC LF82 reference strain modulated the UPS turnover by reducing poly-ubiquitin conjugate accumulation, increasing 26S proteasome activities and decreasing protein levels of the NF-κB regulator CYLD. This resulted in IκB-α degradation and NF-κB activation. This activity was very important for the pathogenicity of AIEC since decreased CYLD resulted in increased ability of AIEC LF82 to replicate intracellularly. CONCLUSIONS: Our results reveal the UPS, and CYLD specifically, as an important contributor to IBD pathogenesis, which is favoured by both genetic and microbial factors.
Resumo:
16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA:rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C:N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.
Resumo:
OBJECTIVE To investigate the lethal activity of photoactivated disinfection (PAD) on Enterococcus faecalis (ATCC 29212) and mixed populations of aerobic or anaerobic bacteria in infected root canals using a diode laser after the application of a photosensitizer (PS). MATERIALS AND METHODS First, the bactericidal activity of a low power diode laser (200 mW) against E. faecalis ATCC 29212 pre-treated with a PS (toluidine blue) for 2 min were examined after different irradiation times (30 s, 60 s and 90 s). The bactericidal activity in the presence of human serum or human serum albumin (HSA) was also examined. Second, root canals were infected with E. faecalis or with mixed aerobic or anaerobic microbial populations for 3 days and then irrigated with 1.5% sodium hypochlorite and exposed to PAD for 60 s. RESULTS Photosensitization followed by laser irradiation for 60 s was sufficient to kill E. faecalis. Bacteria suspended in human serum (25% v/v) were totally eradicated after 30 s of irradiation. The addition of HSA (25 mg/ml or 50 mg/ml) to bacterial suspensions increased the antimicrobial efficacy of PAD after an irradiation time of 30 s, but no longer. The bactericidal effect of sodium hypochlorite was only enhanced by PAD during the early stages of treatment. PAD did not enhance the activity of sodium hypochlorite against a mixture of anaerobic bacteria. CONCLUSIONS The bactericidal activity of PAD appears to be enhanced by serum proteins in vitro, but is limited to bacteria present within the root canal.
Resumo:
Transport of radioactive iodide 131I− in a structured clay loam soil under maize in a final growing phase was monitored during five consecutive irrigation experiments under ponding. Each time, 27 mm of water were applied. The water of the second experiment was spiked with 200 MBq of 131I− tracer. Its activity was monitored as functions of depth and time with Geiger-Müller (G-M) detectors in 11 vertically installed access tubes. The aim of the study was to widen our current knowledge of water and solute transport in unsaturated soil under different agriculturally cultivated settings. It was supposed that the change in 131I− activity (or counting rate) is proportional to the change in soil water content. Rapid increase followed by a gradual decrease in 131I− activity occurred at all depths and was attributed to preferential flow. The iodide transport through structured soil profile was simulated by the HYDRUS 1D model. The model predicted relatively deep percolation of iodide within a short time, in a good agreement with the observed vertical iodide distribution in soil. We found that the top 30 cm of the soil profile is the most vulnerable layer in terms of water and solute movement, which is the same depth where the root structure of maize can extend.
Resumo:
The inflammasome is a complex of proteins that controls the activity of caspase-1, pro-IL-1b and pro-IL-18. It acts in inflammatory processes and in pyropoptosis. The lower intestine is densely populated by a community of commensal bacteria that, under healthy conditions, are beneficial to the host. Some evidence suggests that the gut microbiota influences regulation of the inflammasome. Components of inflammasomes have been shown to have a protective function against development of experimental colitis, dependent on IL-18 production. However the precise mechanisms and the role of the inflammasome in maintaining a healthy host-microbial mutualism remains unknown. To address this question, we have performed axenic (GF) and gnotobiotic in vivo experiments to investigate how the inflammasome components mainly at the level of intestinal epithelial cells (IECs) are regulated under different hygiene conditions. We have established that gene expression of the inflammasome components NLRC4, NLRP3, NLRP6, NLRP12, caspase-1, ASC and IL-18 do not differ between germ-free and colonised conditions under steady-state. In contrast, induction in IL-18 was observed following infection with the pathobiont Segmented Filamentous Bacteria or the pathogen C. rodentium. Additional preliminar findings suggest that a more diverse intestinal flora, like specific pathogen-free (SPF) flora, is more efficient in inducing basal activation of the inflammasome and especially production of IL-18 by IECs, shortly after colonisation. We are also in the process of testing if basal activation of the inflammasome upon intestinal colonization with commensal bacteria helps to protect the host from potential pathobiont bacteria, like C. rodentium, SFB, Prevotella and TM7.
Resumo:
During Escherichia coli urinary tract infections, cells in the human urinary tract release the antimicrobial protein siderocalin (SCN; also known as lipocalin 2, neutrophil gelatinase-associated lipocalin/NGAL, or 24p3). SCN can interfere with E. coli iron acquisition by sequestering ferric iron complexes with enterobactin, the conserved E. coli siderophore. Here we find that human urinary constituents can reverse this relationship, instead making enterobactin critical for overcoming SCN-mediated growth restriction. Urinary control of SCN activity exhibits wide ranging individual differences. We used these differences to identify elevated urinary pH and aryl metabolites as key biochemical host factors controlling urinary SCN activity. These aryl metabolites are well-known products of intestinal microbial metabolism. Together, these results identify an innate antibacterial immune interaction that is critically dependent upon individualistic chemical features of human urine.
Resumo:
Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.
Resumo:
The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64 mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of Porphyromonas gingivalis ATCC 33277 but not of Aggregatibacter actinomycetemcomitans Y4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1-2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine.
Resumo:
To avoid the undesired deprotonation during the addition of organolithium and organomagnesium reagents to ketones, the thioiminium salts, easily prepared from lactams and amides are converted into 2,2-disubstituted and 2-monosubstituted amines by reaction with simple nucleophiles such as organocerium and organocopper reagents. The reaction of thioiminium iodides with organocerium reagents derived by transmetalation of corresponding lithium reagents with anhydrous cerium(III) chloride has been investigated. These thioiminium iodides act as good electrophiles and accept alkylceriums towards bisaddition. The newly synthesized amines have been characterized by 1H and 13C NMR, IR and mass spectra. The amines have been converted into their hydrochlorides and characterized by COSY. These hydrochlorides have been subjected to antimicrobial screening with clinically isolated microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi and Candida albicans. The hydrochlorides show quite good activity against these bacteria and fungus.