904 resultados para smart meters
Resumo:
A major consideration in the performance of mouthguards is their ability to absorb energy and reduce transmitted forces when impacted. This is especially important to participants in contact sports such as hockey or football. The thickness of mouthguard materials is directly related to energy absorption and inversely related to transmitted forces when impacted. However, wearer comfort is also an important factor in their use. Thicker mouthguards are not user-friendly. While thickness of material over incisal edges and cusps of teeth is critical, just how thick should a mouthguard be and especially in these two areas? Transmitted forces through different thicknesses of the most commonly used mouthguard material, ethylene vinyl acetate (EVA) (Shore A Hardness of 80) were compared when impacted with identical forces which were capable of damaging the oro-facial complex. The constant impact force used in the tests was produced by a pendulum and had an energy of 4.4 joules and a velocity of 3 meters per second. Improvements in energy absorption and reductions in transmitted forces were observed with increasing thickness. However, these improvements lessened when the mouthguard material thickness was greater than 4 mm. The results show that the optimal thickness for EVA mouthguard material with a Shore A Hardness of 80 is around 4 mm. Increased thickness, while improving performance marginally, results in less wearer comfort and acceptance.
Resumo:
The suitable use of an array antenna at the base station of a wireless communications system can result in improvement in the signal-to-interference ratio (SIR). In general, the SIR is a function of the direction of arrival of the desired signal and depends on the configuration of the array, the number of elements, and their spacing. In this paper, we consider a uniform linear array antenna and study the effect of varying the number of its elements and inter-element spacing on the SIR performance. (C) 2002 Wiley Periodicals, Inc.
Resumo:
The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.
Resumo:
Primers and DNA probes designed for use in the specific detection of the paramyxean parasites Marteilia sydneyi and Marteilia refringens were tested for their potential to cross-react with closely related species in Polymerase Chain Reaction (PCR) and in situ hybridization. PCR primers and a DNA probe designed within the ITS1 rRNA of M. sydneyi were specific for M. sydneyi when compared with related species of Marteilia and Marteilioides. PCR primers designed within the 18S rRNA of M. refringens were specific in the detection of this species in PCR while a DNA probe (named Smart 2) designed on the same gene cross-reacted with M. sydneyi in tissue sections of Saccostrea glomerata as well as Marteilioides sp. infecting Striostrea mytiloides. Though not species specific, the Smart 2 probe provided a stronger signal in detection of all stages of M. sydneyi than the ITS1 probe. The ITS probe is proposed for use as a confirmatory diagnostic too] for M. sydneyi.
Resumo:
An efficient representation method for arbitrarily shaped image segments is proposed. This method includes a smart way to select wavelet basis to approximate the given image segment, with improved image quality and reduced computational load.
Resumo:
The technique of permanently attaching interdigital transducers (IDT) to either flat or curved structural surfaces to excite single Lamb wave mode has demonstrated great potential for quantitative non-destructive evaluation and smart materials design, In this paper, the acoustic wave field in a composite laminated plate excited by an IDT is investigated. On the basis of discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the surface velocity response of the plate due to the IDTs excitation. In this approach, the frequency spectrum and wave number spectrum of the output of IDT are obtained directly. The corresponding time domain results are calculated by applying a standard inverse fast Fourier transformation technique. Numerical examples are presented to validate the developed method and show the ability of mode selection and isolation. A new effective way of transfer function estimation and interpretation is presented by considering the input wave number spectrum in addition to the commonly used input frequency spectrum. The new approach enables the simple physical evaluation of the influences of IDT geometrical features such as electrode finger widths and overall dimension and excitation signal properties on the input-output characteristics of IDT. Finally, considering the convenience of Mindlin plate wave theory in numerical computations as well as theoretical analysis, the validity is examined of using this approximate theory to design IDT for the excitation of the first and second anti-symmetric Lamb modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Smart State is a Queensland Government initiative that recognises the central role of knowledge-based economic growth. In this context, the management of intellectual property (IP) within Queensland and Australian government research and development agencies has changed dramatically over recent years. Increasing expectations have been placed on utilising public sector IP to both underpin economic development and augment taxes by generating new revenues. Public sector research and development (R&D) management has come under greater scrutiny to commercialise and/or corporatise their activities. In a study of IP management issues in the Queensland Public Sector we developed a framework to facilitate a holistic audit of IP management in government agencies. In this paper we describe this framework as it pertains to one large public sector Agriculture R&D Agency, the Queensland Department of Primary Industries (QDPI). The four overlapping domains of the framework are: IP Generation; IP Rights; IP Uptake; and Corporate IP Support. The audit within QDPI, conducted in 2000 near the outset of Smart State, highlighted some well developed IP management practices within QDPI's traditional areas of focus of innovation (IP Generation) and IP ownership and licensing (IP Rights). However, further management practice developments are required to improve the domains of IP Uptake and Corporate IP Support.
Resumo:
The Smart State initiative requires both improved education and training, panicularly in technical fields, plus entrepreneurship to commercialise new ideas. In this study, we propose an entrepreneurial intentions model as a guide to examine the educational choices and entrepreneurial intentions of first-year University students, focusing on the effect of role models. A survey of over 1000 first-year University students revealed that the most enterprising students were choosing to study in the disciplines of information technology and business, economics and law, or selecting dual degree programs that include business. The role models most often identified for their choice of field of study were parents, followed by teachers and peers, with females identifying more role models than males. For entrepreneurship, students' role models were parents and peers, followed by famous persons and teachers. Males andfemales identified similar numbers of role models, but malesfound starting a business more desirable and more feasible, and reponed higher entrepreneurial intention. The implications of these findings for Sman State policy are discussed.
Resumo:
Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared with the standard model in a pig liver study. Methods: Eight pigs underwent a 5-min dynamic PET study after O-15-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual-inlet concentration was calculated as the flow-weighted inlet concentration. Dynamic PET data were analyzed with a traditional single-compartment model and 2 microvascular models. Results: Microvascular models provided a better fit of the tissue activity of an intravascular tracer than did the compartment model. In particular, the early dynamic phase after a tracer bolus injection was much improved. The regional hepatic blood flow estimates provided by the microvascular models (1.3 +/- 0.3 mL min(-1) mL(-1) for the single-capillary model and 1.14 +/- 0.14 min(-1) mL(-1) for the multiple-capillary model) (mean +/- SEM mL of blood min(-1) mL of liver tissue(-1)) were in agreement with the total blood flow measured by flow meters and normalized to liver weight (1.03 +/- 0.12 mL min(-1) mL(-1)). Conclusion: Compared with the standard compartment model, the 2 microvascular models provide a superior description of tissue activity after an intravascular tracer bolus injection. The microvascular models include only parameters with a clear-cut physiologic interpretation and are applicable to capillary beds in any organ. In this study, the microvascular models were validated for the liver and provided quantitative regional flow estimates in agreement with flow measurements.
Resumo:
Background: Exercise training has been shown to improve exercise capacity in patients with heart failure. We sought to examine the optimal strategy of exercise training for patients with heart failure. Methods: Review of the published data on the characteristics of the training program, with comparison of physiologic markers of exercise capacity in heart failure patients and healthy individuals and comparison of the change in these characteristics after all exercise training program. Results: Many factors, including the duration, supervision, and venue of exercise training; the volume of working muscle; the delivery mode (eg, continuous vs. intermittent exercise), training intensity; and the concurrent effects of medical treatments may influence the results of exercise training in heart failure. Starting in an individually prescribed and safely monitored hospital-based program, followed by progression to an ongoing and progressive home program of exercise appears to be the best solution to the barriers of anxiety, adherence, and ease of access encountered by the heart failure patient. Conclusions: Various exercise training programs have been shown to improve exercise capacity and symptom status in heart failure, but these improvements may only be preserved with an ongoing maintenance program.
Resumo:
Objective To evaluate cardiac electrical function in the Spectacled Flying Fox (bat) infested with Ixodes holocyclus. Design Prospective clinical investigation of bats treated for naturally occurring tick toxicity. Procedure ECGs were performed on bats with tick toxicity (n = 33), bats that recovered slowly (n = 5) and normally (n = 5) following treatment for tick toxicity, and on normal bats with no history of tick toxicity (n = 9). Results Bats with tick toxicity had significantly prolonged corrected QT intervals, bradycardia and rhythm disturbances which included sinus bradydysrhythmia, atrial standstill, ventricular premature complexes, and idioventricular bradydysrhythmia. Conclusions The QT prolongation observed on ECG traces of bats with tick toxicity reflected delayed ventricular repolarisation and predisposed to polymorphic ventricular tachycardia and sudden cardiac death in response to sympathetic stimulation. The inability to document ventricular tachycardia in bats shortly before death from tick toxicity may be explained by a lack of sympathetic responsiveness attributable to the unique parasympathetic innervation of the bat heart, or hypothermiainduced catecholamine receptor down-regulation. Bradycardia and rhythm disturbances may be attributable to hypothermia.
Resumo:
O principal objetivo deste trabalho foi identificar e caracterizar a evolução diária da Camada Limite Atmosférica (CLA) na Região da Grande Vitória (RGV), Estado do Espírito Santo, Brasil e na Região de Dunkerque (RD), Departamento Nord Pas-de-Calais, França, avaliando a acurácia de parametrizações usadas no modelo meteorológico Weather Research and Forecasting (WRF) em detectar a formação e atributos da Camada Limite Interna (CLI) que é formada pelas brisas marítimas. A RGV tem relevo complexo, em uma região costeira de topografia acidentada e uma cadeia de montanhas paralela à costa. A RD tem relevo simples, em uma região costeira com pequenas ondulações que não chegam a ultrapassar 150 metros, ao longo do domínio de estudos. Para avaliar os resultados dos prognósticos feitos pelo modelo, foram utilizados os resultados de duas campanhas: uma realizada na cidade de Dunkerque, no norte da França, em Julho de 2009, utilizando um sistema light detection and ranging (LIDAR), um sonic detection and ranging (SODAR) e dados de uma estação meteorológica de superfície (EMS); outra realizada na cidade de Vitória – Espírito Santo, no mês de julho de 2012, também usando um LIDAR, um SODAR e dados de uma EMS. Foram realizadas simulações usando três esquemas de parametrizações para a CLA, dois de fechamento não local, Yonsei University (YSU) e Asymmetric Convective Model 2 (ACM2) e um de fechamento local, Mellor Yamada Janjic (MYJ) e dois esquemas de camada superficial do solo (CLS), Rapid Update Cycle (RUC) e Noah. Tanto para a RGV quanto para a RD, foram feitas simulações com as seis possíveis combinações das três parametrizações de CLA e as duas de CLS, para os períodos em que foram feitas as campanhas, usando quatro domínios aninhados, sendo os três maiores quadrados com dimensões laterais de 1863 km, 891 km e 297 km, grades de 27 km, 9 km e 3 km, respectivamente, e o domínio de estudo, com dimensões de 81 km na direção Norte-Sul e 63 km na Leste-Oeste, grade de 1 km, com 55 níveis verticais, até um máximo de, aproximadamente, 13.400 m, mais concentrados próximos ao solo. Os resultados deste trabalho mostraram que: a) dependendo da configuração adotada, o esforço computacional pode aumentar demasiadamente, sem que ocorra um grande aumento na acurácia dos resultados; b) para a RD, a simulação usando o conjunto de parametrizações MYJ para a CLA com a parametrização Noah produziu a melhor estimativa captando os fenômenos da CLI. As simulações usando as parametrizações ACM2 e YSU inferiram a entrada da brisa com atraso de até três horas; c) para a RGV, a simulação que usou as parametrizações YSU para a CLA em conjunto com a parametrização Noah para CLS foi a que conseguiu fazer melhores inferências sobre a CLI. Esses resultados sugerem a necessidade de avaliações prévias do esforço computacional necessário para determinadas configurações, e sobre a acurácia de conjuntos de parametrizações específicos para cada região pesquisada. As diferenças estão associadas com a capacidade das diferentes parametrizações em captar as informações superficiais provenientes das informações globais, essenciais para determinar a intensidade de mistura turbulenta vertical e temperatura superficial do solo, sugerindo que uma melhor representação do uso de solo é fundamental para melhorar as estimativas sobre a CLI e demais parâmetros usados por modelos de dispersão de poluentes atmosféricos.
Resumo:
Introdução: Muito embora os estudos apontem para um efeito positivo do exercício físico, em especial o treinamento com exercício aeróbio, sobre a pressão arterial e a distensibilidade arterial, pouco se sabe sobre os efeitos do treinamento com exercício de resistência aeróbia sobre a complacência vascular de indivíduos jovens saudáveis. Objetivos: Avaliar o efeito de 16 semanas de treinamento de resistência aeróbia sobre a função vascular e a pressão arterial de indivíduos jovens sedentários. Métodos: Foram avaliados 56 voluntários (de ambos os sexos, na faixa etária de 18 à 29 anos) antes e após 16 semanas de treinamento com corrida 3 vezes por semana. As medidas de pressão arterial foram realizadas de acordo com a VI Diretrizes Brasileiras de Hipertensão e a velocidade de onda de pulso (VOP) foi realizada com a utilização de um gravador automático computadorizado e os resultados foram analisados pelo programa Complior®. Resultados: Dos 56 indivíduos que participaram do presente estudo, 44 eram do sexo masculino (78,5%) e 12 do sexo feminino (21,5 %). Eles apresentaram idade de 22 ± 3 anos, estatura de 1,75 ± 0,07 metros, circunferência de cintura de 79,6 ± 7,8 cm e PAM de 79 ± 6,4 mmHg. O treinamento promoveu redução da FC repouso (69 ± 7,0 vs. 61 ± 7,1; p<0,05) e aumento do VO2pico (43,3 ± 7,3 vs. 50,1 ± 7,2; p<0,05). Entretanto, pressão arterial sistólica (107 ± 9,4 vs. 110 ± 10), pressão arterial diastólica (63 ± 5,7 vs. 62 ± 5,5), pressão de pulso (44 ± 7,0 vs. 48 ± 7,0) e VOP (6,5 ± 1,1 vs. 6,5 ± 1,1) não apresentaram alteração após o treinamento físico (p>0,05). Conclusões: Podemos concluir que 16 semanas de treinamento de resistência aeróbia foram capazes de aumentar a aptidão cardiorrespiratória, porém não provocaram alterações sobre a velocidade de onda de pulso e pressão arterial em voluntários saudáveis e sedentários. Sugere-se que a ausência de adaptações vasculares após o treinamento seja devido às características da amostra – indivíduos jovens e saudáveis.
Resumo:
Poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3,([PVDF]1−x/[PZT]x) composites of volume fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powders with average grain sizes of 0.2, 0.84, and 2.35 μm in different volume fraction of PZT up to 40 % were mixed with the polymeric matrix. The influence of the inorganic particle size and its content on the thermal degradation properties of the composites was then investigated by means of thermo-gravimetric analysis. It is observed that filler size affects more than filler concentration the degradation temperature and activation energy of the polymer. In the same way and due to their larger specific area, smaller particles leave larger solid residuals after the polymer degradation. The polymer degradation mechanism is not significantly modified by the presence of the inorganic fillers. On the other hand, an inhibition effect occurs due to the presence of the fillers, affecting particularly the activation energy of the process.