971 resultados para size-distribution


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal-slag emulsion is an important process to enhance the reaction rate between the two phases; thus, it improves the heat and mass transfer of the process significantly. Various experimental studies have been carried out, and some system specific relations have been proposed by various investigators. A unified, theoretical study is lacking to model this complex phenomenon. Therefore, two simple models based on fundamental laws for metal droplet velocity (both ascending and descending) and bubble velocity, as well as its position at any instant of time, have been proposed. Analytical solutions have been obtained for the developed equations. Analytical solutions have been verified for the droplet velocity, traveling time, and size distribution in slag phase by performing high-temperature experiments in a Pb-salt system and comparing the obtained data with theory. The proposed model has also been verified with published experimental data for various liquid systems with a wide range of physical properties. A good agreement has been found between the analytical solution and the experimental and published data in all cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of microstructure and texture gradient in warm Accumulative Roll Bonded Cu-Cu multilayer has been studied. Grain size distribution is multimodal and exhibits variation from middle to surface layer. Evolution of texture is largely influenced by shear, in addition to rolling deformation. This leads to the formation of a texture comprising of high fraction of Brass and rolling direction-rotated cube components. Partial recrystallization was observed. Deformed and recrystallized grains were separated using a partition scheme based on grain orientation spread and textures were analyzed for both the partition. Retention of deformation texture components in recrystallized grains suggests the mechanism of recrystallization as continuous recrystallization. Shear deformation plays an important role in grain refinement through continuous recrystallization. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systematic measurements pertinent to the magnetocaloric effect and nature of magnetic transition around the transition temperature are performed in the 10 nm Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). Maxwell's relation is employed to estimate the change in magnetic entropy. At Curie temperature (T-C) similar to 83.5 K, the change in magnetic entropy (-Delta S-M) discloses a typical variation with a value 0.57 J/kg K, and is found to be magnetic field dependent. From the area under the curve (Delta S vs T), the refrigeration capacity is calculated at T-C similar to 83.5K and it is found to be 7.01 J/kg. Arrott plots infer that due to the competition between the ferromagnetic and anti-ferromagnetic interactions, the magnetic phase transition in PCMO10 is broadly spread over both in temperature as well as magnetic field coordinates. Upon tuning the particle size, size distribution, morphology, and relative fraction of magnetic phases, it may be possible to enhance the magnetocalorific effect further in PCMO10. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4759372]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Superplastic tensile tests on warm rolled and optimally annealed boron modified alloy Ti-6Al-4V-0.1B at a temperature of 850 degrees C and initial strain rate of 3 x 10(-4) s(-1) results in a higher elongation (similar to 500%) compared to the base alloy Ti-6Al-4V (similar to 400%). The improvement in superplasticity has been attributed to enhanced contribution from interfacial boundary sliding to the overall deformation for the boron modified alloy. The boundary sliding was facilitated by the starting microstructure which predominantly contains small equiaxed primary a grains with narrow size distribution. Dynamic processes such as coarsening and globularization of primary a phase occur under the test condition but do not significantly contribute to the observed difference in superplasticity between the two alloys. In spite of cavitation takes place around the TiB particles during deformation, they do not cause macroscopic cracking and early fracture by virtue of the cavities being extremely localized. Localized cavitation is found to correlate with increased material transfer due to faster diffusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Cu-Cu multilayer processed by accumulative roll bonding was deformed to large strains and further annealed. The texture of the deformed Cu-Cu multilayer differs from the conventional fcc rolling textures in terms of higher fractions of Bs and RD-rotated cube components, compared with the volume fraction of Cu component. The elongated grain shape significantly affects the deformation characteristics. Characteristic microstructural features of both continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed in the microtexture measurements. X-ray texture measurements of annealing of heavily deformed multilayer demonstrate constrained recrystallization and resulted in a bimodal grain size distribution in the annealed material at higher strains. The presence of cube- and BR-oriented grains in the deformed material confirms the oriented nucleation as the major influence on texture change during recrystallization. Persistence of cube component throughout the deformation is attributed to dynamic recrystallization. Evolution of RD-rotated cube is attributed to the deformation of cube components that evolve from dynamic recrystallization. The relaxation of strain components leads to Bs at larger strains. Further, the Bs component is found to recover rather than recrystallize during deformation. The presence of predominantly Cu and Bs orientations surrounding the interface layer suggests constrained annealing behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article reports the acoustic emission (AE) study of precursory micro-cracking activity and fracture behaviour of quasi-brittle materials such as concrete and cement mortar. In the present study, notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the accompanying AE were recorded using a 8 channel AE monitoring system. The various AE statistical parameters including AE event rate , AE energy release rate , amplitude distribution for computing the AE based b-value, cumulative energy (I E) pound and ring down count (RDC) were used for the analysis. The results show that the micro-cracks initiated and grew at an early stage in mortar in the pre peak regime. While in the case of concrete, the micro-crack growth occurred during the peak load regime. However, both concrete and mortar showed three distinct stages of micro-cracking activity, namely initiation, stable growth and nucleation prior to the final failure. The AE statistical behavior of each individual stage is dependent on the number and size distribution of micro-cracks. The results obtained in the laboratory are useful to understand the various stages of micro-cracking activity during the fracture process in quasi-brittle materials such as concrete & mortar and extend them for field applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cu2CoSnS4 (CCTS) quaternary semiconducting nanoparticles with size distribution from 20 nm to 60 nm were synthesized by one-pot low temperature time and surfactant dependent hydrothermal route. Nanoparticles were characterized structurally and optically. Excitation dependent fluorescence exhibited a dynamic stoke shift referring to the Red-Edge-Effect with peak shifting by a greater magnitude (>100 nm) towards red side, in all the samples. Hybrid devices, fabricated from CCTS nanoparticle inorganic counterparts benefitting from the conjugation of organic P3HT polymer matrix, were demonstrated for photodetection under infra-red and A. M 1.5 solar light illuminations. Faster rise and decay constants of 37 ms and 166 ms, with one order photocurrent amplification from 1.6 x 10(-6) A in the dark to 6.55 x 10(-5) A, upon the 18.50 mW cm(-2) IR lamp illumination, make CCTS a potential candidate for photodetector and photovoltaic applications. (C) 2013 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti - 13Nb - 13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in alpha phase till four passes while the evolution of characteristic ECAP texture in the beta phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in alpha phase weakens while the beta phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in alpha phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in beta phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the beta phase. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study reports a sonochemical-assisted synthesis of a highly active and coke resistant Ni/TiO2 catalyst for dry and steam reforming of methane. The catalyst was characterized using XRD, TEM, XPS, BET analyzer and TGA/DTA techniques. The TEM analysis showed that Ni nanoparticles were uniformly dispersed on TiO2 surface with a narrow size distribution. The catalyst prepared via this approach exhibited excellent activity and stability for both the reactions compared to the reference catalyst prepared from the conventional wet impregnation method. For dry reforming, 86% CH4 conversion and 84% CO2 conversion was obtained at 700 degrees C. Nearly 92% CH4 conversion and 77% CO selectivity was observed under a H2O/CH4 ratio of 1.2 at 700 degrees C for the steam reforming reaction. In particular, the present catalyst is extremely active and resistant to coke formation for steam reforming at low steam/carbon ratios. There is no significant modification of Ni particles size and no coke deposition, even after a long term reaction, demonstrating its potential applicability as an industrial reformate for hydrogen production. The detailed kinetic studies have been presented for steam reforming and the mechanism involving Langmuir-Hinshelwood kinetics with adsorptive dissociation of CH4 as a rate determining step has been used to correlate the experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheological behavior of semi-solid slurries forms the backbone of semi-solid processing of metallic alloys. In particular, the effects of several process and metallurgical parameters such as shear rate, shear time, temperature, rest time and size, distribution and morphology of the primary phase on the viscosity of the slurry needs in-depth characterization. In the present work, rheological behaviour of the semisolid aluminium alloy (A356) slurry is investigated by using a high temperature Searle type Rheometer using concentric cylinders. Three different types of experiment are carried out: isothermal test, continuous cooling test and steady state test. Continuous decrease in viscosity is observed with increasing shear rate at a fixed temperature (isothermal test). It is also found that the viscosity increases with decreasing temperature for a particular shear rate due to increasing solid fraction (continuous cooling test). Thixotropic nature of the slurry is confirmed from the hysteresis loops obtained during experimentation. Time dependence of slurry viscosity has been evaluated from the steady state tests. After a longer shearing time under isothermal conditions the starting dendritic structure of the said alloy is transformed into globular grains due to abrasion, agglomeration, welding and ripening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the impact of the nucleation law for nucleation on Al-Ti-B inoculant particles, of the motion of inoculant particles and of the motion of grains on the predicted macrosegregation and microstructure in a grain-refined Al-22 wt.% Cu alloy casting. We conduct the study by numerical simulations of a casting experiment in a side-cooled 76×76×254 mm sand mould. Macrosegregation and microstructure formation are studied with a volume-averaged two-phase model accounting for macroscopic heat and solute transport, melt convection, and transport of inoculant particles and equiaxed grains. On the microscopic scale it accounts for nucleation on inoculant particles with a given size distribution (and corresponding activation undercooling distribution)and for the growth of globular solid grains. The growth kinetics is described by accounting for limited solute diffusion in both liquid and solid phases and for convective effects. We show that the consideration of a size distribution of the inoculants has a strong impact on the microstructure(final grain size) prediction. The transport of inoculants significantly increases the microstructure heterogeneities and the grain motion refines the microstructure and reduces the microstructure heterogeneities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geopolymers are an alternative binder to portland cement in the manufacture of mortars and concrete, as its three-dimensional aluminosilicate network imparts excellent mechanical properties. Use of geopolymers in place of ordinary portland cement is favored owing to the possible energy and carbon dioxide savings. River sand is another construction industry material that needs development of a sustainable alternate in India. Geopolymerization of fly ash amorphous silica mixtures is employed to produce fine aggregates as a possible replacement to river sand. Geopolymerization of fly ash amorphous silica mixtures in 10M NaOH solution at 100 degrees C for 7days produced fine aggregates termed fly ash geopolymer sand (FAPS)] that had comparable grain size distribution, specific gravity, and improved frictional resistance with river sand. The FAPS particles exhibited more alkaline pH (12.5) and higher total dissolved solids (TDS) concentration (TDS=747 mg/L) in comparison to the river sand specimen (pH=7.9 and TDS=32.5 mg/L). However, when used as fine aggregate in mortar, FAPS-mortar specimens develop similar pH, lower TDS, similar compressive strength, and modulus in relation to river sand-mortar specimens. The experimental results suggest that FAPS particles have the potential to replace river sand in the manufacture of mortar and concrete.