866 resultados para sensory impairment
Resumo:
Germ-line missense mutations of the receptor-like tyrosine kinase ret are the causative genetic event of the multiple endocrine neoplasia (MEN) type 2A and type 2B syndromes and of the familial medullary thyroid carcinoma. We have used the rat pheochromocytoma cell line, PC12, as a model system to investigate the mechanism or mechanisms by which expression of activated ret alleles contributes to the neoplastic phenotype in neuroendocrine cells. Here we show that stable expression of ret mutants (MEN2A and MEN2B alleles) in PC12 cells causes a dramatic conversion from a round to a flat morphology, accompanied by the induction of genes belonging to the early as well as the delayed response to nerve growth factor. However, in the transfected PC12 cells, the continuous expression of neuronal specific genes is not associated with the suppression of cell proliferation. Furthermore, expression of ret mutants renders PC12 cells unresponsive to nerve growth factor-induced inhibition of proliferation. These results suggest that induction of an aberrant pattern of differentiation, accompanied by unresponsiveness to growth-inhibitory physiological signals, may be part of the mechanism of action of activated ret alleles in the pathogenesis of neuroendocrine tumors associated with MEN2 syndromes.
Resumo:
Neutral residue replacements were made of 21 acidic and basic residues within the N-terminal half of the Halobacterium salinarium signal transducer HtrI [the halobacterial transducer for sensory rhodopsin I (SRI)] by site-specific mutagenesis. The replacements are all within the region of HtrI that we previously concluded from deletion analysis to contain sites of interaction with the phototaxis receptor SRI. Immunoblotting shows plasmid expression of the htrI-sopI operon containing the mutations produces SRI and mutant HtrI in cells at near wild-type levels. Six of the HtrI mutations perturb photochemical kinetics of SRI and one reverses the phototaxis response. Substitution with neutral amino acids of Asp-86, Glu-87, and Glu-108 accelerate, and of Arg-70, Arg-84, and Arg-99 retard, the SRI photocycle. Opposite effects on photocycle rate cancel in double mutants containing one replaced acidic and one replaced basic residue. Laser flash spectroscopy shows the kinetic perturbations are due to alteration of the rate of reprotonation of the retinylidene Schiff base. All of these mutations permit normal attractant and repellent signaling. On the other hand, the substitution of Glu-56 with the isosteric glutamine converts the normally attractant effect of orange light to a repellent signal in vivo at neutral pH (inverted signaling). Low pH corrects the inversion due to Glu-56 -> Gln and the apparent pK of the inversion is increased when arginine is substituted at position 56. The results indicate that the cytoplasmic end of transmembrane helix-2 and the initial part of the cytoplasmic domain contain interaction sites with SRI. To explain these and previous results, we propose a model in which (i) the HtrI region identified here forms part of an electrostatic bonding network that extends through the SRI protein and includes its photoactive site; (ii) alteration of this network by photoisomerization-induced Schiff base deprotonation and reprotonation shifts HtrI between attractant and repellent conformations; and (iii) HtrI mutations and extracellular pH alter the equilibrium ratios of these conformations.
Resumo:
Neuregulins are ligands for the erbB family of receptor tyrosine kinases and mediate growth and differentiation of neural crest, muscle, breast cancer, and Schwann cells. Neuregulins contain an epidermal growth factor-like domain located C-terminally to either an Ig-like domain or a cysteine-rich domain specific to the sensory and motor neuron-derived isoform. Here it is shown that elimination of the Ig-like domain-containing neuregulins by homologous recombination results in embryonic lethality associated with a deficiency of ventricular myocardial trabeculation and impairment of cranial ganglion development. The erbB receptors are expressed in myocardial cells and presumably mediate the neuregulin signal originating from endocardial cells. The trigeminal ganglion is reduced in size and lacks projections toward the brain stem and mandible. We conclude that IgL-domain-containing neuregulins play a major role in cardiac and neuronal development.
Resumo:
The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.
Resumo:
Ultra-low picomolar concentrations of the opioid antagonists naloxone (NLX) and naltrexone (NTX) have remarkably potent antagonist actions on excitatory opioid receptor functions in mouse dorsal root ganglion (DRG) neurons, whereas higher nanomolar concentrations antagonize excitatory and inhibitory opioid functions. Pretreatment of naive nociceptive types of DRG neurons with picomolar concentrations of either antagonist blocks excitatory prolongation of the Ca(2+)-dependent component of the action potential duration (APD) elicited by picomolar-nanomolar morphine and unmasks inhibitory APD shortening. The present study provides a cellular mechanism to account for previous reports that low doses of NLX and NTX paradoxically enhance, instead of attenuate, the analgesic effects of morphine and other opioid agonists. Furthermore, chronic cotreatment of DRG neurons with micromolar morphine plus picomolar NLX or NTX prevents the development of (i) tolerance to the inhibitory APD-shortening effects of high concentrations of morphine and (ii) supersensitivity to the excitatory APD-prolonging effects of nanomolar NLX as well as of ultra-low (femtomolar-picomolar) concentrations of morphine and other opioid agonists. These in vitro studies suggested that ultra-low doses of NLX or NTX that selectively block the excitatory effects of morphine may not only enhance the analgesic potency of morphine and other bimodally acting opioid agonists but also markedly attenuate their dependence liability. Subsequent correlative studies have now demonstrated that cotreatment of mice with morphine plus ultra-low-dose NTX does, in fact, enhance the antinociceptive potency of morphine in tail-flick assays and attenuate development of withdrawal symptoms in chronic, as well as acute, physical dependence assays.
Resumo:
Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities.
Resumo:
The sensing of an odorant by an animal must be a rapid but transient process, requiring an instant response and also a speedy termination of the signal. Previous biochemical and electrophysiological studies suggest that one or more phosphodiesterases (PDEs) may play an essential role in the rapid termination of the odorant-induced cAMP signal. Here we report the molecular cloning, expression, and characterization of a cDNA from rat olfactory epithelium that encodes a member of the calmodulin-dependent PDE family designated as PDE1C. This enzyme shows high affinity for cAMP and cGMP, having a Km for cAMP much lower than that of any other neuronal Ca2+/calmodulin-dependent PDE. The mRNA encoding this enzyme is highly enriched in olfactory epithelium and is not detected in six other tissues tested. However, RNase protection analyses indicate that other alternative splice variants related to this enzyme are expressed in several other tissues. Within the olfactory epithelium, this enzyme appears to be expressed exclusively in the sensory neurons. The high affinity for cAMP of this Ca2+/calmodulin-dependent PDE and the fact that its mRNA is highly concentrated in olfactory sensory neurons suggest an important role for it in a Ca(2+)-regulated olfactory signal termination.
Resumo:
Synapsin I, the most abundant of all neuronal phosphoproteins, is enriched in synaptic vesicles. It has been hypothesized to regulate synaptogenesis and neurotransmitter release from adult nerve terminals. The evidence for such roles has been highly suggestive but not compelling. To evaluate the possible involvement of synapsin I in synaptogenesis and in the function of adult synapses, we have generated synapsin I-deficient mice by homologous recombination. We report herein that outgrowth of predendritic neurites and of axons was severely retarded in the hippocampal neurons of embryonic synapsin I mutant mice. Furthermore, synapse formation was significantly delayed in these mutant neurons. These results indicate that synapsin I plays a role in regulation of axonogenesis and synaptogenesis.
Resumo:
Synapsin I has been proposed to be involved in the modulation of neurotransmitter release by controlling the availability of synaptic vesicles for exocytosis. To further understand the role of synapsin I in the function of adult nerve terminals, we studied synapsin I-deficient mice generated by homologous recombination. The organization of synaptic vesicles at presynaptic terminals of synapsin I-deficient mice was markedly altered: densely packed vesicles were only present in a narrow rim at active zones, whereas the majority of vesicles were dispersed throughout the terminal area. This was in contrast to the organized vesicle clusters present in terminals of wild-type animals. Release of glutamate from nerve endings, induced by K+,4-aminopyridine, or a Ca2+ ionophore, was markedly decreased in synapsin I mutant mice. The recovery of synaptic transmission after depletion of neurotransmitter by high-frequency stimulation was greatly delayed. Finally, synapsin I-deficient mice exhibited a strikingly increased response to electrical stimulation, as measured by electrographic and behavioral seizures. These results provide strong support for the hypothesis that synapsin I plays a key role in the regulation of nerve terminal function in mature synapses.
Resumo:
Although the gene defect responsible for Huntington disease (HD) has recently been identified, the pathogenesis of the disease remains obscure. One potential mechanism is that the gene defect may lead to an impairment of energy metabolism followed by slow excitotoxic neuronal injury. In the present study we examined whether chronic administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, can replicate the neuropathologic and clinical features of HD in nonhuman primates. After 3-6 weeks of 3-NP administration, apomorphine treatment induced a significant increase in motor activity as compared with saline-treated controls. Animals showed both choreiform movements, as well as foot and limb dystonia, which are characteristic of HD. More prolonged 3-NP treatment in two additional primates resulted in spontaneous dystonia and dyskinesia accompanied by lesions in the caudate and putamen seen by magnetic resonance imaging. Histologic evaluation showed that there was a depletion of calbindin neurons, astrogliosis, sparing of NADPH-diaphorase neurons, and growth-related proliferative changes in dendrites of spiny neurons similar to changes in HD. The striosomal organization of the striatum and the nucleus accumbens were spared. These findings show that chronic administration of 3-NP to nonhuman primates can replicate many of the characteristic motor and histologic features of HD, further strengthening the possibility that a subtle impairment of energy metabolism may play a role in its pathogenesis.
Resumo:
We have generated mice with a null mutation at the Ada locus, which encodes the purine catabolic enzyme adenosine deaminase (ADA, EC 3.5.4.4). ADA-deficient fetuses exhibited hepatocellular impairment and died perinatally. Their lymphoid tissues were not largely affected. Accumulation of ADA substrates was detectable in ADA-deficient conceptuses as early as 12.5 days postcoitum, dramatically increasing during late in utero development, and is the likely cause of liver damage and fetal death. The results presented here demonstrate that ADA is important for the homeostatic maintenance of purines in mice.
Resumo:
The utrophin gene is closely related to the dystrophin gene in both sequence and genomic structure. The Duchenne muscular dystrophy (DMD) locus encodes three 14-kb dystrophin transcripts in addition to several smaller isoforms, one of which, Dp116, is specific to peripheral nerve. We describe here the corresponding 5.5-kb mRNA from the utrophin locus. This transcript, designated G-utrophin, is of particular interest because it is specifically expressed in the adult mouse brain and appears to be the predominant utrophin transcript in this tissue. G-utrophin is expressed in brain sites generally different from the regions expressing beta-dystroglycan. During mouse embryogenesis G-utrophin is also seen in the developing sensory ganglia. Our data confirm the close evolutionary relationships between the DMD and utrophin loci; however, the functions for the corresponding proteins probably differ.
Resumo:
Proton translocation experiments with intact cells of Halobacterium salinarium overproducing sensory rhodopsin I (SRI) revealed transport activity of SRI in a two-photon process. The vectoriality of proton translocation depends on pH, being outwardly directed above, and inwardly directed below, pH 5.7. Activation of the transport cycle requires excitation of the initial dark state of SRI, SRI590, to form the intermediate SRI380. Action spectra identify the photocycle intermediates SRI380 and SRI520 as the two photochemically reactive species in the outwardly directed transport process. As shown by flash photolysis experiments, SRI520 undergoes a so-far unknown photochemical reaction to SRI380 with a half-time of <200 micros. Mutation of SRI residue Asp-76, the residue which is equivalent to the proton acceptor Asp-85 in bacteriorhodopsin, to asparagine leads to inactivation of proton translocation. This demonstrates that the underlying mechanisms of proton transport in both retinal proteins share similar features. However, SRI is to our knowledge the first case where photochemical reactions between two thermally unstable photoproducts of a retinal protein constitute a catalytic ion transport cycle.
Resumo:
Regenerative proliferation occurs in the inner-ear sensory epithelial of warm-blooded vertebrates after insult. To determine how this proliferation is controlled in the mature mammalian inner ear, several growth factors were tested for effects on progenitor-cell division in cultured mouse vestibular sensory epithelia. Cell proliferation was induced in the sensory epithelium by transforming growth factor alpha (TGF-alpha) in a dose-dependent manner. Proliferation was also induced by epidermal growth factor (EGF) when supplemented with insulin, but not EGF alone. These observations suggest that stimulation of the EGF receptors by TGF-alpha binding, or EGF (plus insulin) binding, stimulates cell proliferation in the mature mammalian vestibular sensory epithelium.
Resumo:
Residue replacements were made at five positions (Arg-73, Asp-76, Tyr-87, Asp-106, and Asp-201) in the Halobacterium salinarium phototaxis receptor sensory rhodopsin I (SR-I) by site-specific mutagenesis. The sites were chosen for their correspondence in position to residues of functional importance in the homologous light-driven proton pump bacteriorhodopsin found in the same organism. This work identifies a residue in SR-I shown to be of vital importance to its attractant signaling function: Asp-201. The effect of the substitution with the isosteric asparagine is to convert the normally attractant signal of orange light stimulation to a repellent signal. In contrast, similar neutral substitution of the four other ionizable residues near the photoactive site allows essentially normal attractant and repellent phototaxis signaling. Wild-type two-photon repellent signaling by the receptor is intact in the Asp-201 mutant, genetically separating the wild-type attractant and repellent signal generation processes. A possible explanation and implications of the inverted signaling are discussed. Results of neutral residue substitution for Asp-76 confirm our previous evidence that proton transfer reactions involving this residue are not important to phototaxis but that Asp-76 functions as the Schiff base proton acceptor in proton translocation by transducer-free SR-I.