914 resultados para second-order model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper analyses the cosmological consequences of amodified theory of gravity whose action integral is built from a linear combination of the Ricci scalar R and a quadratic term in the covariant derivative of R. The resulting Friedmann equations are of the fifth-order in the Hubble function. These equations are solved numerically for a flat space section geometry and pressureless matter. The cosmological parameters of the higher-order model are fit using SN Ia data and X-ray gas mass fraction in galaxy clusters. The best-fit present-day t(0) values for the deceleration parameter, jerk and snap are given. The coupling constant beta of the model is not univocally determined by the data fit, but partially constrained by it. Density parameter Omega(m0) is also determined and shows weak correlation with the other parameters. The model allows for two possible future scenarios: there may be either an eternal expansion or a Rebouncing event depending on the set of values in the space of parameters. The analysis towards the past performed with the best-fit parameters shows that the model is not able to accommodate a matter-dominated stage required to the formation of structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The temperature dependencies of specific heat and spin susceptibility of a coupled dx2-y2 + idxy superconductor in the presence of a weak dxy component are investigated in the tight-binding model (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature Tc, first a less ordered dx2-y2 superconductor is created, which changes to a more ordered dx2-y2 + idxy superconductor at Tcl(< Tc). This manifests in two second order phase transitions identified by two jumps in specific heat at Tc and Tc1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below Tc1 and confirm the new phase transition. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: This study used 12 photoelastics models with different height and thickness to evaluate if the axial loading of 100N on implants changes the morphology of the photoelastic reflection. Methods: For the photoelastic analysis, the models were placed in a reflection polariscope for observation of the isochromatic fringes patterns. The formation of these fringes resulted from an axial load of 100N applied to the midpoint of the healing abutment attached to the implant with 10.0mm x 3.75mm (Conexão, Sistemas de Próteses, Brazil). The tension in each photoelastic model was monitored, photographed and observed using the software Phothoshop 7.0. For qualitative analysis, the area under the implant apex was measured including the green band of the second order fringe of each model using the software Image Tool. After comparison of the areas, the performance generated by each specimen was defined regarding the axial loading. Results: There were alterations in area with different height and thickness of the photoelastic models. It was observed that the group III (30mm in height) presented the smallest area. Conclusion: There was variation in the size of the areas analyzed for different height and thickness of the models and the morphology of the replica may directly influence the result in researches with photoelastic models.