882 resultados para robot tasks
Resumo:
A large part of the new generation of computer numerical control systems has adopted an architecture based on robotic systems. This architecture improves the implementation of many manufacturing processes in terms of flexibility, efficiency, accuracy and velocity. This paper presents a 4-axis robot tool based on a joint structure whose primary use is to perform complex machining shapes in some non-contact processes. A new dynamic visual controller is proposed in order to control the 4-axis joint structure, where image information is used in the control loop to guide the robot tool in the machining task. In addition, this controller eliminates the chaotic joint behavior which appears during tracking of the quasi-repetitive trajectories required in machining processes. Moreover, this robot tool can be coupled to a manipulator robot in order to form a multi-robot platform for complex manufacturing tasks. Therefore, the robot tool could perform a machining task using a piece grasped from the workspace by a manipulator robot. This manipulator robot could be guided by using visual information given by the robot tool, thereby obtaining an intelligent multi-robot platform controlled by only one camera.
Resumo:
The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment but usually the huge amount of 3D information is unmanageable by the robot storage and computing capabilities. A data compression is necessary to store and manage this information but preserving as much information as possible. In this paper, we propose a 3D lossy compression system based on plane extraction which represent the points of each scene plane as a Delaunay triangulation and a set of points/area information. The compression system can be customized to achieve different data compression or accuracy ratios. It also supports a color segmentation stage to preserve original scene color information and provides a realistic scene reconstruction. The design of the method provides a fast scene reconstruction useful for further visualization or processing tasks.
Resumo:
Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.
Resumo:
New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.
Resumo:
Este trabajo muestra cómo se realiza la enseñanza de robótica mediante un robot modular y los resultados educativos obtenidos en el Máster Universitario en Automática y Robótica de la Escuela Politécnica Superior de la Universidad de Alicante. En el artículo se describen los resultados obtenidos con el uso de este robot modular tanto en competencias genéricas como específicas, en las enseñanzas de electrónica, control y programación del Máster. En este artículo se exponen los objetivos de aprendizaje para cada uno de ellos, su aplicación a la enseñanza y los resultados educativos obtenidos. En los resultados del estudio, cabe destacar que el alumno ha mostrado mayor interés y ha fomentado su aprendizaje autónomo. Para ello, el robot modular se construyó con herramientas para fomentar este tipo de enseñanza y aprendizaje, tales como comunicaciones interactivas para monitorizar, cambiar y adaptar diversos parámetros de control y potencia del robot.
Resumo:
Este trabajo presenta el diseño, construcción y programación de un robot modular para el desarrollo tanto de competencias genéricas como específicas, en las enseñanzas de electrónica, control y programación del Master de Automática y Robótica de la Escuela Politécnica Superior de la Universidad de Alicante. En este trabajo se exponen los diferentes módulos propuestos, así como los objetivos de aprendizaje para cada uno de ellos. Uno de los factores más importantes a destacar en el presente estudio es el posible desarrollo de la creatividad y el aprendizaje autónomo. Para ello, se desarrollará especialmente un módulo de comunicación por bluetooth que servirá para monitorizar, cambiar y adaptar on-line diversos parámetros de control y potencia del robot. Además, dicha herramienta se ha introducido como parte de la metodología en las asignaturas del Máster de Electromecánica y Sistemas de Control Automático. En esta memoria se mostrarán los distintos resultados obtenidos durante y en la finalización de este trabajo.
Control and Guidance of Low-Cost Robots via Gesture Perception for Monitoring Activities in the Home
Resumo:
This paper describes the development of a low-cost mini-robot that is controlled by visual gestures. The prototype allows a person with disabilities to perform visual inspections indoors and in domestic spaces. Such a device could be used as the operator's eyes obviating the need for him to move about. The robot is equipped with a motorised webcam that is also controlled by visual gestures. This camera is used to monitor tasks in the home using the mini-robot while the operator remains quiet and motionless. The prototype was evaluated through several experiments testing the ability to use the mini-robot’s kinematics and communication systems to make it follow certain paths. The mini-robot can be programmed with specific orders and can be tele-operated by means of 3D hand gestures to enable the operator to perform movements and monitor tasks from a distance.
Resumo:
During grasping and intelligent robotic manipulation tasks, the camera position relative to the scene changes dramatically because the robot is moving to adapt its path and correctly grasp objects. This is because the camera is mounted at the robot effector. For this reason, in this type of environment, a visual recognition system must be implemented to recognize and “automatically and autonomously” obtain the positions of objects in the scene. Furthermore, in industrial environments, all objects that are manipulated by robots are made of the same material and cannot be differentiated by features such as texture or color. In this work, first, a study and analysis of 3D recognition descriptors has been completed for application in these environments. Second, a visual recognition system designed from specific distributed client-server architecture has been proposed to be applied in the recognition process of industrial objects without these appearance features. Our system has been implemented to overcome problems of recognition when the objects can only be recognized by geometric shape and the simplicity of shapes could create ambiguity. Finally, some real tests are performed and illustrated to verify the satisfactory performance of the proposed system.
Resumo:
The purpose of this study was to report the knowledge used by expert high performance gymnastic coaches in the organization of training and competition. In-depth interviews were conducted with 9 coaches who worked with male gymnasts and 8 coaches who worked with female gymnasts. Qualitative analyses showed that coaches of males and coaches of females planned training similarly, except that coaches of females appeared to emphasize esthetic and nutritional issues to a greater extent. Coaches of males revealed more concerns about the organization of gymnasts' physical conditioning. Analysis indicated that expert gymnastic coaches of males and females are constantly involved in dynamic social interactions with gymnasts, parents, and assistant coaches. Many areas of coaches' organizational work, such as dealing with the athletes' personal concerns and working with parents, are not part of the structure of coaches' training programs and emerged as crucial tasks of expert gymnastic coaches for developing elite gymnasts.
Resumo:
Introduction – Based on a previous project of University of Lisbon (UL) – a Bibliometric Benchmarking Analysis of University of Lisbon, for the period of 2000-2009 – a database was created to support research information (ULSR). However this system was not integrated with other existing systems at University, as the UL Libraries Integrated System (SIBUL) and the Repository of University of Lisbon (Repositório.UL). Since libraries were called to be part of the process, the Faculty of Pharmacy Library’ team felt that it was very important to get all systems connected or, at least, to use that data in the library systems. Objectives – The main goals were to centralize all the scientific research produced at Faculty of Pharmacy, made it available to the entire Faculty, involve researchers and library team, capitalize and reinforce team work with the integration of several distinct projects and reducing tasks’ redundancy. Methods – Our basis was the imported data collection from the ISI Web of Science (WoS), for the period of 2000-2009, into ULSR. All the researchers and indexed publications at WoS, were identified. A first validation to identify all the researchers and their affiliation (university, faculty, department and unit) was done. The final validation was done by each researcher. In a second round, concerning the same period, all Pharmacy Faculty researchers identified their published scientific work in other databases/resources (NOT WoS). To our strategy, it was important to get all the references and essential/critical to relate them with the correspondent digital objects. To each researcher previously identified, was requested to register all their references of the ‘NOT WoS’ published works, at ULSR. At the same time, they should submit all PDF files (for both WoS and NOT WoS works) in a personal area of the Web server. This effort enabled us to do a more reliable validation and prepare the data and metadata to be imported to Repository and to Library Catalogue. Results – 558 documents related with 122 researchers, were added into ULSR. 1378 bibliographic records (WoS + NOT WoS) were converted into UNIMARC and Dublin Core formats. All records were integrated in the catalogue and repository. Conclusions – Although different strategies could be adopted, according to each library team, we intend to share this experience and give some tips of what could be done and how Faculty of Pharmacy created and implemented her strategy.