984 resultados para rice anther
Resumo:
La semilla es el órgano que garantiza la propagación y continuidad evolutiva de las plantas espermatofitas y constituye un elemento indispensable en la alimentación humana y animal. La semilla de cereales acumula en el endospermo durante la maduración, mayoritariamente, almidón y proteínas de reserva. Estas reservas son hidrolizadas en la germinación por hidrolasas sintetizadas en la aleurona en respuesta a giberelinas (GA), siendo la principal fuente de energía hasta que la plántula emergente es fotosintéticamente activa. Ambas fases del desarrollo de la semilla, están reguladas por una red de factores de transcripción (TF) que unen motivos conservados en cis- en los promotores de sus genes diana. Los TFs son proteínas que han desempeñado un papel central en la evolución y en el proceso de domesticación, siendo uno de los principales mecanismos de regulación génica; en torno al 7% de los genes de plantas codifican TFs. Atendiendo al motivo de unión a DNA, éstos, se han clasificado en familias. La familia DOF (DNA binding with One Finger) participa en procesos vitales exclusivos de plantas superiores y sus ancestros cercanos (algas, musgos y helechos). En las semillas de las Triticeae (subfamilia Pooideae), se han identificado varias proteínas DOF que desempeñan un papel fundamental en la regulación de la expresión génica. Brachypodium distachyon es la primera especie de la subfamilia Pooideae cuyo genoma (272 Mbp) ha sido secuenciado. Su pequeño tamaño, ciclo de vida corto, y la posibilidad de ser transformado por Agrobacterium tumefaciens (plásmido Ti), hacen que sea el sistema modelo para el estudio de cereales de la tribu Triticeae con gran importancia agronómica mundial, como son el trigo y la cebada. En este trabajo, se han identificado 27 genes Dof en el genoma de B. distachyon y se han establecido las relaciones evolutivas entre estos genes Dof y los de cebada (subfamilia Pooideae) y de arroz (subfamilia Oryzoideae), construyendo un árbol filogenético en base al alineamiento múltiple del dominio DOF. La cebada contiene 26 genes Dof y en arroz se han anotado 30. El análisis filogenético establece cuatro grupos de genes ortólogos (MCOGs: Major Clusters of Orthologous Genes), que están validados por motivos conservados adicionales, además del dominio DOF, entre las secuencias de las proteínas de un mismo MCOG. El estudio global de expresión en diferentes órganos establece un grupo de nueve genes BdDof expresados abundantemente y/o preferencialmente en semillas. El estudio detallado de expresión de estos genes durante la maduración y germinación muestra que BdDof24, ortólogo putativo a BPBF-HvDOF24 de cebada, es el gen más abundante en las semillas en germinación de B. distachyon. La regulación transcripcional de los genes que codifican hidrolasas en la aleurona de las semillas de cereales durante la post‐germinación ha puesto de manifiesto la existencia en sus promotores de un motivo tripartito en cis- conservado GARC (GA-Responsive Complex), que unen TFs de la clase MYB-R2R3, DOF y MYBR1-SHAQKYF. En esta tesis, se ha caracterizado el gen BdCathB de Brachypodium que codifica una proteasa tipo catepsina B y es ortólogo a los genes Al21 de trigo y HvCathB de cebada, así como los TFs responsables de su regulación transcripcional BdDOF24 y BdGAMYB (ortólogo a HvGAMYB). El análisis in silico del promotor BdCathB ha identificado un motivo GARC conservado, en posición y secuencia, con sus ortólogos en trigo y cebada. La expresión de BdCathB se induce durante la germinación, así como la de los genes BdDof24 y BdGamyb. Además, los TFs BdDOF24 y BdGAMYB interaccionan en el sistema de dos híbridos de levadura e in planta en experimentos de complementación bimolecular fluorescente. En capas de aleurona de cebada, BdGAMYB activa el promotor BdCathB, mientras que BdDOF24 lo reprime; este resultado es similar al obtenido con los TFs ortólogos de cebada BPBF-HvDOF24 y HvGAMYB. Sin embargo, cuando las células de aleurona se transforman simultáneamente con los dos TFs, BdDOF24 tiene un efecto aditivo sobre la trans-activación mediada por BdGAMYB, mientras que su ortólogo BPBF-HvDOF24 produce el efecto contrario, revirtiendo el efecto de HvGAMYB sobre el promotor BdCathB. Las diferencias entre las secuencias deducidas de las proteínas BdDOF24 y BPBF-HvDOF24 podrían explicar las funciones opuestas que desempeñan en su interacción con GAMYB. Resultados preliminares con líneas de inserción de T-DNA y de sobre-expresión estable de BdGamyb, apoyan los resultados obtenidos en expresión transitoria. Además las líneas homocigotas knock-out para el gen BdGamyb presentan alteraciones en anteras y polen y no producen semillas viables. ABSTRACT The seed is the plant organ of the spermatophytes responsible for the dispersion and survival in the course of evolution. In addition, it constitutes one of the most importan elements of human food and animal feed. The main reserves accumulated in the endosperm of cereal seeds through the maturation phase of development are starch and proteins. Its degradation by hydrolases synthetized in aleurone cells in response to GA upon germination provides energy, carbon and nitrogen to the emerging seedling before it acquires complete photosynthetic capacity. Both phases of seed development are controlled by a network of transcription factors (TFs) that interact with specific cis- elements in the promoters of their target genes. TFs are proteins that have played a central role during evolution and domestication, being one of the most important regulatory mechanisms of gene expression. Around 7% of genes in plant genomes encode TFs. Based on the DNA binding motif, TFs are classified into families. The DOF (DNA binding with One Finger) family is involved in specific processes of plants and its ancestors (algae, mosses and ferns). Several DOF proteins have been described to play important roles in the regulation of genes in seeds of the Triticeae tribe (Pooideae subfamily). Brachypodium distachyon is the first member of the Pooideae subfamily to be sequenced. Its small size and compact structured genome (272 Mbp), the short life cycle, small plant size and the possibility of being transformed with Agrobacterium tumefaciens (Ti-plasmid) make Brachypodium the model system for comparative studies within cereals of the Triticeae tribe that have big economic value such as wheat and barley. In this study, 27 Dof genes have been identified in the genome of B. distachyon and the evolutionary relationships among these Dof genes and those frome barley (Pooideae subfamily) and those from rice (Oryzoideae subfamily) have been established by building a phylogenetic tree based on the multiple alignment of the DOF DNA binding domains. The barley genome (Hordeum vulgare) contains 26 Dof genes and in rice (Oryza sativa) 30 genes have been annotated. The phylogenetic analysis establishes four Major Clusters of Orthologous Genes (MCOGs) that are supported by additional conserved motives out of the DOF domain, between proteins of the same MCOG. The global expression study of BdDof genes in different organs and tissues classifies BdDof genes into two groups; nine of the 27 BdDof genes are abundantly or preferentially expressed in seeds. A more detailed expression analysis of these genes during seed maturation and germination shows that BdDof24, orholog to barley BPBF-HvDof24, is the most abundantly expressed gene in germinating seeds. Transcriptional regulation studies of genes that encode hydrolases in aleurone cells during post-germination of cereal seeds, have identified in their promoters a tripartite conserved cis- motif GARC (GA-Responsive Complex) that binds TFs of the MYB-R2R3, DOF and MYBR1-SHAQKYF families. In this thesis, the characterization of the BdCathB gene, encoding a Cathepsin B-like protease and that is ortholog to the wheat Al21 and the barley HvCathB genes, has been done and its transcriptional regulation by the TFs BdDOF24 and BdGAMYB (ortholog to HvGAMYB) studied. The in silico analysis of the BdCathB promoter sequence has identified a GARC motif. BdCathB expression is induced upon germination, as well as, those of BdDof24 and BdGamyb genes. Moreover, BdDOF24 and BdGAMYB interact in yeast (Yeast 2 Hybrid System, Y2HS) and in planta (Bimolecular Fluorecence Complementation, BiFC). In transient assays in aleurone cells, BdGAMYB activates the BdCathB promoter, whereas BdDOF24 is a transcriptional repressor, this result is similar to that obtained with the barley orthologous genes BPBF-HvDOF24 and HvGAMYB. However, when aleurone cells are simultaneously transformed with both TFs, BdDOF24 has an additive effect to the trans-activation mediated by BdGAMYB, while its ortholog BPBF-HvDOF24 produces an opposite effect by reducing the HvGAMYB activation of the BdCathB promoter. The differences among the deduced protein sequences between BdDOF24 and BPBF-HvDOF24 could explain their opposite functions in the interaction with GAMYB protein. Preliminary results of T-DNA insertion (K.O.) and stable over-expression lines of BdGamyb support the data obtained in transient expression assays. In addition, the BdGamyb homozygous T-DNA insertion (K.O.) lines have anther and pollen alterations and they do not produce viable seeds.
Resumo:
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Don?ana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods?analytic hierarchy process, Likert scale and equal weights?that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and evenmore so under an increased water scarcity scenario.
Resumo:
Climate change impacts are expected to affect rice farming and wetlands welfare in the Doñana protected Area, due to decreases in quantity and quality water supply and higher temperatures. The largest rice farming area is closely located to the Doñana wetlands in the Guadalquivir river basin estuary (South Western of Spain).
Resumo:
Organization of transgenes in rice transformed through direct DNA transfer strongly suggests a two-phase integration mechanism. In the “preintegration” phase, transforming plasmid molecules (either intact or partial) are spliced together. This gives rise to rearranged transgenic sequences, which upon integration do not contain any interspersed plant genomic sequences. Subsequently, integration of transgenic DNA into the host genome is initiated. Our experiments suggest that the original site of integration acts as a hot spot, facilitating subsequent integration of successive transgenic molecules at the same locus. The resulting transgenic locus may have plant DNA separating the transgenic sequences. Our data indicate that transformation through direct DNA transfer, specifically particle bombardment, generally results in a single transgenic locus as a result of this two-phase integration mechanism. Transgenic plants generated through such processes may, therefore, be more amenable to breeding programs as the single transgenic locus will be easier to characterize genetically. Results from direct DNA transfer experiments suggest that in the absence of protein factors involved in exogenous DNA transfer through Agrobacterium, the qualitative and/or quantitative efficiency of transformation events is not compromised. Our results cast doubt on the role of Agrobacterium vir genes in the integration process.
Resumo:
The rice blast fungus, Magnaporthe grisea, generates enormous turgor pressure within a specialized cell called the appressorium to breach the surface of host plant cells. Here, we show that a mitogen-activated protein kinase, Mps1, is essential for appressorium penetration. Mps1 is 85% similar to yeast Slt2 mitogen-activated protein kinase and can rescue the thermosensitive growth of slt2 null mutants. The mps1–1Δ mutants of M. grisea have some phenotypes in common with slt2 mutants of yeast, including sensitivity to cell-wall-digesting enzymes, but display additional phenotypes, including reduced sporulation and fertility. Interestingly, mps1–1Δ mutants are completely nonpathogenic because of the inability of appressoria to penetrate plant cell surfaces, suggesting that penetration requires remodeling of the appressorium wall through an Mps1-dependent signaling pathway. Although mps1–1Δ mutants are unable to cause disease, they are able to trigger early plant-cell defense responses, including the accumulation of autofluorescent compounds and the rearrangement of the actin cytoskeleton. We conclude that MPS1 is essential for pathogen penetration; however, penetration is not required for induction of some plant defense responses.
Resumo:
The genetic basis of heterosis was investigated in an elite rice hybrid by using a molecular linkage map with 150 segregating loci covering the entire rice genome. Data for yield and three traits that were components of yield were collected over 2 years from replicated field trials of 250 F2:3 families. Genotypic variations explained from about 50% to more than 80% of the total variation. Interactions between genotypes and years were small compared with the main effects. A total of 32 quantitative trait loci (QTLs) were detected for the four traits; 12 were observed in both years and the remaining 20 were detected in only one year. Overdominance was observed for most of the QTLs for yield and also for a few QTLs for the component traits. Correlations between marker heterozygosity and trait expression were low, indicating that the overall heterozygosity made little contribution to heterosis. Digenic interactions, including additive by additive, additive by dominance, and dominance by dominance, were frequent and widespread in this population. The interactions involved large numbers of marker loci, most of which individually were not detectable on single-locus basis; many interactions among loci were detected in both years. The results provide strong evidence that epistasis plays a major role as the genetic basis of heterosis.
Resumo:
Acknowledgements Mayuri Munasinghe was supported by a Commonwealth Scholarship (ref no. LKCS-2009-384). The development and use of the SNP chip was funded by a BBSRC grant BB/J003336/1. The authors thank Owen Price (University of Wollongong, Australia) for producing the coloured province map of Sri Lanka, Gareth Norton (Aberdeen) for merging the RDP1 SNP data with the Sri Lankan data and Tony Travis (Aberdeen) for help with PCA.
Resumo:
Internodes of deepwater rice are induced to grow rapidly when plants become submerged. This adaptation enables deepwater rice to keep part of its foliage above the rising flood waters during the monsoon season and to avoid drowning. This growth response is, ultimately, elicited by the plant hormone gibberellin (GA). The primary target tissue for GA action is the intercalary meristem of the internode. Using differential display of mRNA, we have isolated a number of genes whose expression in the intercalary meristem is regulated by GA. The product of one of these genes was identified as an ortholog of replication protein A1 (RPA1). RPA is a heterotrimeric protein involved in DNA replication, recombination, and repair and also in regulation of transcription. A chimeric construct, in which the single-stranded DNA-binding domain of rice RPA1 was spliced into the corresponding region of yeast RPA1, was able to complement a yeast rpa1 mutant. The transcript level of rice RPA1 is high in tissues containing dividing cells. RPA1 mRNA levels increase rapidly in the intercalary meristem during submergence and treatment with GA before the increase in the level of histone H3 mRNA, a marker for DNA replication.
Resumo:
Peptide growth factors were isolated from conditioned medium derived from rice (Oryza sativa L.) suspension cultures and identified to be a sulfated pentapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH] and its C-terminal-truncated tetrapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH]. These structures were identical to the phytosulfokines originally found in asparagus (Asparagus officinalis L.) mesophyll cultures. The pentapeptide [phytosulfokine-α (PSK-α)] very strongly stimulated colony formation of rice protoplasts at concentrations above 10−8 M, indicating a similar mode of action in rice of phytosulfokines. Binding assays using 35S-labeled PSK-α demonstrated the existence of both high- and low-affinity specific saturable binding sites on the surface of rice cells in suspension. Analysis of [35S]PSK-α binding in differential centrifugation fractions suggested association of the binding with a plasma membrane-enriched fraction. The apparent Kd values for [35S]PSK-α binding were found to be 1 × 10−9 M for the high-affinity type and 1 × 10−7 M for the low-affinity type, with maximal numbers of binding sites of 1 × 104 sites per cell and 1 × 105 sites per cell, respectively. Competition studies with [35S]PSK-α and several synthetic PSK-α analogs demonstrated that only peptides that possesses mitogenic activity can effectively displace the radioligand. These results suggest that a signal transduction pathway mediated by peptide factors is involved in plant cell proliferation.
Resumo:
The rice genus, Oryza, which comprises 23 species and 9 recognized genome types, represents an enormous gene pool for genetic improvement of rice cultivars. Clarification of phylogenetic relationships of rice genomes is critical for effective utilization of the wild rice germ plasm. By generating and comparing two nuclear gene (Adh1 and Adh2) trees and a chloroplast gene (matK) tree of all rice species, phylogenetic relationships among the rice genomes were inferred. Origins of the allotetraploid species, which constitute more than one-third of rice species diversity, were reconstructed based on the Adh gene phylogenies. Genome types of the maternal parents of allotetraploid species were determined based on the matK gene tree. The phylogenetic reconstruction largely supports the previous recognition of rice genomes. It further revealed that the EE genome species is most closely related to the DD genome progenitor that gave rise to the CCDD genome. Three species of the CCDD genome may have originated through a single hybridization event, and their maternal parent had the CC genome. The BBCC genome species had different origins, and their maternal parents had either a BB or CC genome. An additional genome type, HHKK, was recognized for Oryza schlechteri and Porteresia coarctata, suggesting that P. coarctata is an Oryza species. The AA genome lineage, which contains cultivated rice, is a recently diverged and rapidly radiated lineage within the rice genus.
Resumo:
In plants, sugar feedback regulation provides a mechanism for control of carbohydrate allocation and utilization among tissues and organs. The sugar repression of α-amylase gene expression in rice provides an ideal model for studying the mechanism of sugar feedback regulation. We have shown previously that sugar repression of α-amylase gene expression in rice suspension cells involves control of both transcription rate and mRNA stability. The α-amylase mRNA is significantly more stable in sucrose-starved cells than in sucrose-provided cells. To elucidate the mechanism of sugar-dependent mRNA turnover, we have examined the effect of αAmy3 3′ untranslated region (UTR) on mRNA stability by functional analyses in transformed rice suspension cells. We found that the entire αAmy3 3′ UTR and two of its subdomains can independently mediate sugar-dependent repression of reporter mRNA accumulation. Analysis of reporter mRNA half-lives demonstrated that the entire αAmy3 3′ UTR and the two subdomains each functioned as a sugar-dependent destabilizing determinant in the turnover of mRNA. Nuclear run-on transcription analysis further confirmed that the αAmy3 3′ UTR and the two subdomains did not affect the transcription rate of promoter. The identification of sequence elements in the α-amylase mRNA that dictate the differential stability has very important implications for the study of sugar-dependent mRNA decay mechanisms.
Resumo:
Many reports have shown that plant growth and yield is superior on mixtures of NO3− and NH4+ compared with provision of either N source alone. Despite its clear practical importance, the nature of this N-source synergism at the cellular level is poorly understood. In the present study we have used the technique of compartmental analysis by efflux and the radiotracer 13N to measure cellular turnover kinetics, patterns of flux partitioning, and cytosolic pool sizes of both NO3− and NH4+ in seedling roots of rice (Oryza sativa L. cv IR72), supplied simultaneously with the two N sources. We show that plasma membrane fluxes for NH4+, cytosolic NH4+ accumulation, and NH4+ metabolism are enhanced by the presence of NO3−, whereas NO3− fluxes, accumulation, and metabolism are strongly repressed by NH4+. However, net N acquisition and N translocation to the shoot with dual N-source provision are substantially larger than when NO3− or NH4+ is provided alone at identical N concentrations.
Resumo:
The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.
Resumo:
Cyclin-dependent protein kinases (CDKs) play key roles in regulating the eukaryotic cell cycle. We have analyzed the expression of four rice (Oryza sativa) CDK genes, cdc2Os1, cdc2Os2, cdc2Os3, and R2, by in situ hybridization of sections of root apices. Transcripts of cdc2Os1, cdc2Os2, and R2 were detected uniformly in the dividing region of the root apex. cdc2Os1 and cdc2Os2 were also expressed in differentiated cells such as those in the sclerenchyma, pericycle, and parenchyma of the central cylinder. By contrast, signals corresponding to transcripts of cdc2Os3 were distributed only in patches in the dividing region. Counterstaining of sections with 4′,6-diamidino-2-phenylindole and double-target in situ hybridization with a probe for histone H4 transcripts revealed that cdc2Os3 transcripts were abundant from the G2 to the M phase, but were less abundant or absent during the S phase. The levels of the Cdc2Os3 protein and its associated histone H1-kinase activity were reduced by treatment of cultured cells with hydroxyurea, which blocks cycling cells at the onset of the S phase. Our results suggest that domains other than the conserved amino acid sequence (the PSTAIRE motif) have important roles in the function of non-PSTAIRE CDKs in distinct cell-cycle phases.