910 resultados para quantification géométrique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research measured particle and gaseous emissions from ships and trains operating within the Port of Brisbane, and explored their influence on ambient air composition at a downwind suburban measurement site. The ship and train emission factor investigations resulted in the development of novel measurement techniques which permit the quantification of particle and gaseous emission factors using samples collected from post-emission exhaust plumes. The urban influence investigation phase of the project produced a new approach to identifying influences from ship emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The aim of the study was to determine the association, agreement, and detection capability of manual, semiautomated, and fully automated methods of corneal nerve fiber length (CNFL) quantification of the human corneal subbasal nerve plexus (SNP). Methods Thirty-three participants with diabetes and 17 healthy controls underwent laser scanning corneal confocal microscopy. Eight central images of the SNP were selected for each participant and analyzed using manual (CCMetrics), semiautomated (NeuronJ), and fully automated (ACCMetrics) software to quantify the CNFL. Results For the entire cohort, mean CNFL values quantified by CCMetrics, NeuronJ, and ACCMetrics were 17.4 ± 4.3 mm/mm2, 16.0 ± 3.9 mm/mm2, and 16.5 ± 3.6 mm/mm2, respectively (P < 0.01). CNFL quantified using CCMetrics was significantly higher than those obtained by NeuronJ and ACCMetrics (P < 0.05). The 3 methods were highly correlated (correlation coefficients 0.87–0.98, P < 0.01). The intraclass correlation coefficients were 0.87 for ACCMetrics versus NeuronJ and 0.86 for ACCMetrics versus CCMetrics. Bland–Altman plots showed good agreement between the manual, semiautomated, and fully automated analyses of CNFL. A small underestimation of CNFL was observed using ACCMetrics with increasing the amount of nerve tissue. All 3 methods were able to detect CNFL depletion in diabetic participants (P < 0.05) and in those with peripheral neuropathy as defined by the Toronto criteria, compared with healthy controls (P < 0.05). Conclusions Automated quantification of CNFL provides comparable neuropathy detection ability to manual and semiautomated methods. Because of its speed, objectivity, and consistency, fully automated analysis of CNFL might be advantageous in studies of diabetic neuropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian networks (BNs) are graphical probabilistic models used for reasoning under uncertainty. These models are becoming increasing popular in a range of fields including ecology, computational biology, medical diagnosis, and forensics. In most of these cases, the BNs are quantified using information from experts, or from user opinions. An interest therefore lies in the way in which multiple opinions can be represented and used in a BN. This paper proposes the use of a measurement error model to combine opinions for use in the quantification of a BN. The multiple opinions are treated as a realisation of measurement error and the model uses the posterior probabilities ascribed to each node in the BN which are computed from the prior information given by each expert. The proposed model addresses the issues associated with current methods of combining opinions such as the absence of a coherent probability model, the lack of the conditional independence structure of the BN being maintained, and the provision of only a point estimate for the consensus. The proposed model is applied an existing Bayesian Network and performed well when compared to existing methods of combining opinions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Techniques are presented for enhancing weak Raman scattering signals for rapid yet accurate substance detection. Novel surfaces that allow signal enhancement quantification are described as are eye-safe methodologies that maximize the stand-off Raman detection range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This program of research linked police and health data collections to investigate the potential benefits for road safety in terms of enhancing the quality of data. This research has important implications for road safety because, although police collected data has historically underpinned efforts in the area, it is known that many road crashes are not reported to police and that these data lack specific injury severity information. This research shows that data linkage provides a more accurate quantification of the severity and prevalence of road crash injuries which is essential for: prioritising funding; targeting interventions; and estimating the burden and cost of road trauma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Summarizing the epidemiology of major depressive disorder (MDD) at a global level is complicated by significant heterogeneity in the data. The aim of this study is to present a global summary of the prevalence and incidence of MDD, accounting for sources of bias, and dealing with heterogeneity. Findings are informing MDD burden quantification in the Global Burden of Disease (GBD) 2010 Study. Method A systematic review of prevalence and incidence of MDD was undertaken. Electronic databases Medline, PsycINFO and EMBASE were searched. Community-representative studies adhering to suitable diagnostic nomenclature were included. A meta-regression was conducted to explore sources of heterogeneity in prevalence and guide the stratification of data in a meta-analysis. Results The literature search identified 116 prevalence and four incidence studies. Prevalence period, sex, year of study, depression subtype, survey instrument, age and region were significant determinants of prevalence, explaining 57.7% of the variability between studies. The global point prevalence of MDD, adjusting for methodological differences, was 4.7% (4.4–5.0%). The pooled annual incidence was 3.0% (2.4–3.8%), clearly at odds with the pooled prevalence estimates and the previously reported average duration of 30 weeks for an episode of MDD. Conclusions Our findings provide a comprehensive and up-to-date profile of the prevalence of MDD globally. Region and study methodology influenced the prevalence of MDD. This needs to be considered in the GBD 2010 study and in investigations into the ecological determinants of MDD. Good-quality estimates from low-/middle-income countries were sparse. More accurate data on incidence are also required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of GNSS tracked Lagrangian drifters allows more realistic quantification of fluid motion and dispersion coefficients than Eulerian techniques because such drifters are analogues of particles that are relevant to flow field characterisation and pollutant dispersion. Using the fast growing Real Time Kinematic (RTK) positioning technique derived from Global Satellite Navigation Systems (GNSS), drifters are developed for high frequency (10 Hz) sampling with position estimates to centimetre accuracy. The drifters are designed with small size and less direct wind drag to follow the sub-surface flow which characterizes dispersion in shallow waters. An analysis of position error from stationary observation indicates that the drifter can efficiently resolve motion up to 1 Hz. The result of the field deployments of the drifter in conjunction with acoustic Eulerian devices shows higher estimate of the drifter streamwise velocities. Single particle statistical analysis of field deployments in a shallow estuarine zone yielded dispersion coefficients estimate comparable to those of dye tracer studies. The drifters capture the tidal elevation during field studies in a tidal estuary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptides constructed from α-helical subunits of the Lac repressor protein (LacI) were designed then tailored to achieve particular binding kinetics and dissociation constants for plasmid DNA purification and detection. Surface plasmon resonance was employed for quantification and characterization of the binding of double stranded Escherichia coli plasmid DNA (pUC19) via the lac operon (lacO) to "biomimics" of the DNA binding domain of LacI. Equilibrium dissociation constants (K D), association (k a), and dissociation rates (k d) for the interaction between a suite of peptide sequences and pUC19 were determined. K D values measured for the binding of pUC19 to the 47mer, 27mer, 16mer, and 14mer peptides were 8.8 ± 1.3 × 10 -10 M, 7.2 ± 0.6 × 10 -10 M, 4.5 ± 0.5 × 10 -8 M, and 6.2 ± 0.9 × 10 -6 M, respectively. These findings show that affinity peptides, composed of subunits from a naturally occurring operon-repressor interaction, can be designed to achieve binding characteristics suitable for affinity chromatography and biosensor devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmid DNA for therapeutic and vaccination purposes must be highly purified. The high selectivity of affinity chromatography makes it ideal for the isolation of pDNA from complex biological feed stocks. Affinity chromatography makes use of the biological function and/or individual chemical structure of the interacting molecules. However, the success of any affinity purification protocol is dependent on the availability of suitable ligands. In this study, surface plasmon resonance (SPR) based Biacore system has been employed for the detection and quantification of the binding between lac operon (lacO) sequence contained in a pDNA and synthetic peptides based on the DNA-binding domain of the lac repressor protein, lad. The equilibrium dissociation constant (K D) and association and dissociation rate constants (ka, kd) for the interaction between plasmid DNA and designed peptides were determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study developed a comprehensive research methodology for identification and quantification of sources responsible for pollutant build-up and wash-off from urban road surfaces. The study identified soil and asphalt wear, and non-combusted diesel fuel as the most influential sources for metal and hydrocarbon pollution respectively. The study also developed mathematical models to relate contributions from identified sources to underlying site specific factors such as land use and traffic. Developed mathematical model will play a key role in urban planning practices, enabling the implementation of effective water pollution control strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique, localised bubbling zones on the water storage were found to produce over 50,000 mg m-2 d-1 and the areal extent ranged from 1.8 to 7% of the total reservoir area. The drivers behind these changes as well as lessons learnt from the system implementation are presented. This system exploits relatively cheap materials, sensing and computing and can be applied to a wide variety of aquatic and terrestrial systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.