924 resultados para proposed. budget
Resumo:
Although the world’s attention has on several occasions been turned to the plight of the vision impaired, there has been no international copyright instrument that specifically provides for limitations or exceptions to copyright for their benefit. Such an instrument becomes imperative amidst the grow- ing number of persons in this category and the need to facilitate their access to information that will give them the opportunity to participate in public affairs. Brazil, Ecuador, Paraguay, and Mexico (Brazilian group) seek to fill this gap by submitting to the WIPO’s Standing Committee on Copyright and Related Rights a draft treaty for Improved Access for Blind, Visually Impaired and Other Reading Disabled Persons. How- ever, this proposal has generated a lot of reactions, resulting in three other such proposals being submit- ted to WIPO for deliberations. Copyright owners have also opposed the treaty. Amidst these reactions, this work seeks to analyze the compatibility of the Brazilian group’s proposal with the TRIPS three-step test, which has enjoyed a great deal of international recognition since its inclusion in the Berne Convention. It also seeks to find its compatibility with EU copyright law as harmonized in the Directive 2001/29/EC. In the end, we conclude that the proposed treaty is in harmony with the three-step test, and though it has some variations from the EU Copyright Directive, it nonetheless shares some underlying objectives with the Directive and does not radically depart from what prevails in several EU member states.
Resumo:
Applying location-focused data protection law within the context of a location-agnostic cloud computing framework is fraught with difficulties. While the Proposed EU Data Protection Regulation has introduced a lot of changes to the current data protection framework, the complexities of data processing in the cloud involve various layers and intermediaries of actors that have not been properly addressed. This leaves some gaps in the regulation when analyzed in cloud scenarios. This paper gives a brief overview of the relevant provisions of the regulation that will have an impact on cloud transactions and addresses the missing links. It is hoped that these loopholes will be reconsidered before the final version of the law is passed in order to avoid unintended consequences.
Resumo:
The near-surface wind and temperature regime at three points in the Atacama Desert of northern Chile is described using two-year multi-level measurements from 80-m towers located in an altitude range between 2100 and 2700 m ASL. The data reveal the frequent development of strong nocturnal drainage flows at all sites. Down-valley nose-shaped wind speed profiles are observed with maximum values occurring at heights between 20 m and 60 m AGL. The flow intensity shows considerable inter-daily variability and a seasonal modulation of maximum speeds, which in the cold season can attain hourly average values larger than 20 m s−1. Turbulent mixing appears significant over the full tower layer, affecting the curvature of the nighttime temperature profile and possibly explaining the observed increase of surface temperatures in the down-valley direction. Nocturnal valley winds and temperatures are weakly controlled by upper-air conditions observed at the nearest aerological station. Estimates of terms in the momentum budget for the development and the quasi-stationary phases of the down-valley flows suggest that the pressure gradient force due to the near-surface cooling along the sloping valley axes plays an important role in these drainage flows. A scale for the jet nose height of equilibrium turbulent down-slope jets is proposed, based on surface friction velocity and surface inversion intensity. At one of the sites this scale explains about 70% of the case-to-case observed variance of jet nose heights. Further modeling and observational work is needed, however, in order to better define the dynamics, extent and turbulence structure of this flow system, which has significant wind-energy, climatic and environmental implications.
Resumo:
Several strategies relying on kriging have recently been proposed for adaptively estimating contour lines and excursion sets of functions under severely limited evaluation budget. The recently released R package KrigInv 3 is presented and offers a sound implementation of various sampling criteria for those kinds of inverse problems. KrigInv is based on the DiceKriging package, and thus benefits from a number of options concerning the underlying kriging models. Six implemented sampling criteria are detailed in a tutorial and illustrated with graphical examples. Different functionalities of KrigInv are gradually explained. Additionally, two recently proposed criteria for batch-sequential inversion are presented, enabling advanced users to distribute function evaluations in parallel on clusters or clouds of machines. Finally, auxiliary problems are discussed. These include the fine tuning of numerical integration and optimization procedures used within the computation and the optimization of the considered criteria.
Resumo:
The seasonal dynamics of molybdenum (Mo) were studied in the water column of two tidal basins of the German Wadden Sea (Sylt-Rømø and Spiekeroog) between 2007 and 2011. In contrast to its conservative behaviour in the open ocean, both, losses of more than 50% of the usual concentration level of Mo in seawater and enrichments up to 20% were observed repeatedly in the water column of the study areas. During early summer, Mo removal by adsorption on algae-derived organic matter (e.g. after Phaeocystis blooms) is postulated to be a possible mechanism. Mo bound to organic aggregates is likely transferred to the surface sediment where microbial decomposition enriches Mo in the pore water. First δ98/95Mo data of the study area disclose residual Mo in the open water column being isotopically heavier than MOMo (Mean Ocean Molybdenum) during a negative Mo concentration anomaly, whereas suspended particulate matter shows distinctly lighter values. Based on field observations a Mo isotope enrichment factor of ε = −0.3‰ has been determined which was used to argue against sorption on metal oxide surfaces. It is suggested here that isotope fractionation is caused by biological activity and association to organic matter. Pelagic Mo concentration anomalies exceeding the theoretical salinity-based concentration level, on the other hand, cannot be explained by replenishment via North Sea waters alone and require a supply of excess Mo. Laboratory experiments with natural anoxic tidal flat sediments and modelled sediment displacement during storm events suggest fast and effective Mo release during the resuspension of anoxic sediments in oxic seawater as an important process for a recycling of sedimentary sulphide bound Mo into the water column.
Resumo:
Derivation of probability estimates complementary to geophysical data sets has gained special attention over the last years. Information about a confidence level of provided physical quantities is required to construct an error budget of higher-level products and to correctly interpret final results of a particular analysis. Regarding the generation of products based on satellite data a common input consists of a cloud mask which allows discrimination between surface and cloud signals. Further the surface information is divided between snow and snow-free components. At any step of this discrimination process a misclassification in a cloud/snow mask propagates to higher-level products and may alter their usability. Within this scope a novel probabilistic cloud mask (PCM) algorithm suited for the 1 km × 1 km Advanced Very High Resolution Radiometer (AVHRR) data is proposed which provides three types of probability estimates between: cloudy/clear-sky, cloudy/snow and clear-sky/snow conditions. As opposed to the majority of available techniques which are usually based on the decision-tree approach in the PCM algorithm all spectral, angular and ancillary information is used in a single step to retrieve probability estimates from the precomputed look-up tables (LUTs). Moreover, the issue of derivation of a single threshold value for a spectral test was overcome by the concept of multidimensional information space which is divided into small bins by an extensive set of intervals. The discrimination between snow and ice clouds and detection of broken, thin clouds was enhanced by means of the invariant coordinate system (ICS) transformation. The study area covers a wide range of environmental conditions spanning from Iceland through central Europe to northern parts of Africa which exhibit diverse difficulties for cloud/snow masking algorithms. The retrieved PCM cloud classification was compared to the Polar Platform System (PPS) version 2012 and Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 cloud masks, SYNOP (surface synoptic observations) weather reports, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask version 3 and to MODIS collection 5 snow mask. The outcomes of conducted analyses proved fine detection skills of the PCM method with results comparable to or better than the reference PPS algorithm.
Resumo:
The immune system evolved to protect organisms from an infinite variety of disease-causing agents but to avoid harmful responses to self. However, such a powerf~dl efense mechanism requires regulation. Immune regulation includes homeostatic and cellmediated targeted mechanisms to the activation, differentiation and function of antigen-triggered immuno-competent cells and irnmunoregulatory cells. The regulation of the immune system has been a major challenge for the management of autoimmune disorders, tumor immunity, infectious diseases and organ transplants. However, irnmuno-modulatory procedures used by modern medicine to induce immunoregulatory function have deleterious side effects. Ashwangandha (Withania somnifera), an herb used in Ayurvedic medicine is being tested and used in experimental and clinical cases with potential immuno-modulatory functions without any side effects. Here we propose future usages of Ashwangandha for immuno-regulatory function in translational research.
Resumo:
Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.
Resumo:
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr−1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9–3.5%) in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr−1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr−1 or 3.6 ± 0.2 PgC yr−1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr−1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr−1. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.
Resumo:
In a world characterized by increasing pressure from financial and product markets, the question of how exogenous constraints affect internal coordination and control processes has become increasingly important. This experiment investigates how two exogenous constraints that superiors can face in budget negotiation settings, increased opportunity costs and financial pressure to meet unit targets, affect budget negotiations and subordinate effort. The results show that both constraints induce more cooperation, but in different ways. Financial pressure on the superior leads to more cooperative negotiation behavior by superiors and subordinates than increased opportunity costs. Specifically, subordinates do not take advantage of the superior's increased financial pressure to enforce lower budgets. After negotiation, both constraints strongly mitigate the negative effects of superior budget imposition on subordinate effort because exogenous constraints eliminate the effect of procedural fairness considerations on subordinate effort.
Resumo:
In the wake of the financial crisis, budgetary discipline has taken centre stage in politics. More than ever a country's budget mirrors the true policy preferences of the legislative majority beyond all political discourse and cheap talk. The paper sheds light on mandate fulfilment in the field of public spending and fiscal policy in general. Based on previous work on pledge fulfilment in Switzerland the paper compares publicised pre-electoral statements of MPs on public spending and the development of the public finances with their post-electoral legislative behaviour during budget debates and votes. The findings of the paper confirm the results of the aforementioned earlier studies and point to the potential of budgetary statements for future mandate fulfilment research.
Resumo:
Although beryllium-10 (10Be) concentrations in stream sediments provide useful synoptic views of catchment-wide erosion rates, little is known on the relative contributions of different sediment supply mechanisms to the acquisition of their initial signature in the headwaters. Here we address this issue by conducting a 10Be-budget of detrital materials that characterize the morphogenetic domains representative of high-altitude environments of the European Alps. We focus on the Etages catchment, located in the Ecrins-Pelvoux massif (southeast France), and illustrate how in situ 10Be concentrations can be used for tracing the origin of the sand fraction from the bedload in the trunk stream. The landscape of the Etages catchment is characterized by a geomorphic transient state, high topographic gradients, and a large variety of modern geomorphic domains ranging from glacial environments to scarcely vegetated alluvial plains. Beryllium-10 concentrations measured in the Etages catchment vary from similar to 1 x 104 to 4.5 x 105 atoms per gram quartz, while displaying consistent 10Be signatures within each representative morphogenetic unit. We show that the basic requirements for inferring catchment-wide denudation from 10Be concentration measurements are not satisfied in this small, dynamic catchment. However, the distinct 10Be signature observed for the geomorphic domains can be used as a tracer. We suggest that a terrestrial cosmogenic nuclide (TCN) budget approach provides a valuable tool for the tracing of material origin in basins where the let nature do the averaging' principles may be violated.
Resumo:
BACKGROUND Pulmonary hypertension (PH) frequently coexists with severe aortic stenosis, and PH severity has been shown to predict outcomes after transcatheter aortic valve implantation (TAVI). The effect of PH hemodynamic presentation on clinical outcomes after TAVI is unknown. METHODS AND RESULTS Of 606 consecutive patients undergoing TAVI, 433 (71.4%) patients with severe aortic stenosis and a preprocedural right heart catheterization were assessed. Patients were dichotomized according to whether PH was present (mean pulmonary artery pressure, ≥25 mm Hg; n=325) or not (n=108). Patients with PH were further dichotomized by left ventricular end-diastolic pressure into postcapillary (left ventricular end-diastolic pressure, >15 mm Hg; n=269) and precapillary groups (left ventricular end-diastolic pressure, ≤15 mm Hg; n=56). Finally, patients with postcapillary PH were divided into isolated (n=220) and combined (n=49) subgroups according to whether the diastolic pressure difference (diastolic pulmonary artery pressure-left ventricular end-diastolic pressure) was normal (<7 mm Hg) or elevated (≥7 mm Hg). Primary end point was mortality at 1 year. PH was present in 325 of 433 (75%) patients and was predominantly postcapillary (n=269/325; 82%). Compared with baseline, systolic pulmonary artery pressure immediately improved after TAVI in patients with postcapillary combined (57.8±14.1 versus 50.4±17.3 mm Hg; P=0.015) but not in those with precapillary (49.0±12.6 versus 51.6±14.3; P=0.36). When compared with no PH, a higher 1-year mortality rate was observed in both precapillary (hazard ratio, 2.30; 95% confidence interval, 1.02-5.22; P=0.046) and combined (hazard ratio, 3.15; 95% confidence interval, 1.43-6.93; P=0.004) but not isolated PH patients (P=0.11). After adjustment, combined PH remained a strong predictor of 1-year mortality after TAVI (hazard ratio, 3.28; P=0.005). CONCLUSIONS Invasive stratification of PH according to hemodynamic presentation predicts acute response to treatment and 1-year mortality after TAVI.