961 resultados para project for undergraduate organic laboratory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA), these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC) species react to such changes in the seawater chemistry. The present work aims to investigate the mid-term effect of decreased pH on calcification of the two branching CWC species most widely distributed in the Mediterranean, Lophelia pertusa and Madrepora oculata. No significant effects were observed in the skeletal growth rate, microdensity and porosity of both species after 6 months of exposure. However, while the calcification rate of M. oculata was similar for all colony fragments, a heterogeneous skeletal growth pattern was observed in L. pertusa, the younger nubbins showing higher growth rates than the older ones. A higher energy demand is expected in these young, fast-growing fragments and, therefore, a reduction in calcification might be noticed earlier during long-term exposure to acidified conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diazotrophic cyanobacteria often form extensive summer blooms in the Baltic Sea driving their environment into phosphate limitation. One of the main species is the heterocystous cyanobacterium Nodularia spumigena. N. spumigena exhibits accelerated uptake of phosphate through the release of the exoenzyme alkaline phosphatase that also serves as an indicator of the hydrolysis of dissolved organic phosphorus (DOP). The present study investigated the utilization of DOP and its compounds (e.g. ATP) by N. spumigena during growth under varying CO2 concentrations, in order to estimate potential consequences of ocean acidification on the cell's supply with phosphorus. Cell growth, phosphorus pool fractions, and four DOP-compounds (ATP, DNA, RNA, and phospholipids) were determined in three set-ups with different CO2 concentrations (341, 399, and 508 µatm) during a 15-day batch experiment. The results showed rapid depletion of dissolved inorganic phosphorus (DIP) in all pCO2 treatments while DOP utilization increased with elevated pCO2, in parallel with the growth stimulation of N. spumigena. During the growth phase, DOP uptake was enhanced by a factor of 1.32 at 399 µatm and of 2.25 at 508 µatm compared to the lowest pCO2 concentration. Among the measured DOP compounds, none was found to accumulate preferentially during the incubation or in response to a specific pCO2 treatment. However, at the beginning 61.9 ± 4.3% of the DOP were not characterized but comprised the most highly utilized fraction. This is demonstrated by the decrement of this fraction to 27.4 ± 9.9% of total DOP during the growth phase, especially in response to the medium and high pCO2 treatment. Our results indicate a stimulated growth of diazotrophic cyanobacteria at increasing CO2 concentrations that is accompanied by increasing utilization of DOP as an alternative P source.