769 resultados para potato apyrase
Resumo:
In this work, a colorimetric indicator for food oxidation based on the detection of hexanal in gas-phase, has been developed. In fact, in recent years, the food packaging industry has evolved towards new generation of packaging, like active and intelligent. According to literature (Pangloli P. et al. 2002), hexanal is the main product of a fatty acid oxidation: the linoleic acid. So, it was chosen to analyse two kinds of potato chips, fried in two different oils with high concentration of linoleic acid: olive oil and sunflower oil. Five different formulas were prepared and their colour change when exposed to hexanal in gas phase was evaluated. The formulas evaluations were first conducted on filter paper labels. The next step was to select the thickener to add to the formula, in order to coat a polypropylene film, more appropriate than the filter paper for a production at industrial scale. Three kinds of thickeners were tested: a cellulose derivative, an ethylene vinyl-alcohol and a polyvinyl alcohol. To obtain the final labels with the autoadhesive layer, the polypropylene film with the selected formula and thickener was coat with a water based adhesive. For both filter paper and polypropylene labels, with and without autoadhesive layer, the detection limit and the detection time were measured. For the selected formula on filter paper labels, the stability was evaluated, when conserved on the dark or on the light, in order to determine the storage time. Both potato chips samples, stocked at the same conditions, were analysed using an optimised Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) method, in order to determine the concentration of volatilized hexanal. With the aim to establish if the hexanal can be considered as an indicator of the end of potato chips shelf life, sensory evaluation was conducted each day of HS-SPME-GC-MS analysis.
Resumo:
Acrylamide (AA) is an undesirable food toxic compound, classified as 'probably carcinogenic to humans' by the International Agency for Research on Cancer due to its toxic effects, including neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. AA is mainly formed during the heat treatment of foods (> 120 °C) by the Maillard reaction, an essential reaction that also allows the desired levels of shelf-life and sensory properties of various food products to be achieved. Over the years, authorities and regulations have become more restrictive regarding the maximum levels of AA permitted in foods and beverages. The latest Commission Regulation (EU) 2017/2158 contains reference levels and measures to reduce AA in several food groups that contribute to the highest dietary intake, making necessary the study of promising AA mitigation strategies. The aim of this PhD research project was to identify, characterise and optimise some AA mitigation strategies in the most at-risk widely consumed foods such as potato, coffee and bakery products. Some AA control strategies were selected and investigated for each food category, also considering the main quality characteristics of the final products. The comprehensive results obtained during the three years of research activity have allowed a deeper knowledge of the traditional and innovative AA mitigation strategies, which can be extremely useful for both the food industry and international authorities. The most promising strategies studied in terms of reduction of AA while maintaining the main quality characteristics of the examined foods were: the application of pulsed electric fields and yeast immersion as pre-treatments of chips for frying; the selection of high roasting degrees for coffee products; the selection of static baking conditions for biscuits; the optimisation of alternative biscuit’ formulations by both the use of chickpea legume flour and of flour from bean with intact cotyledon cell walls.
Resumo:
Pulsed electric field technology is one of the most attractive new non-thermal technology thanks to its lower energy consumption and short treatment times. It consists of an electric treatment of short duration (from several ns to several ms) with electric field strengths from 0.1 to 80 kV/cm that lead to an increase in the permeability of the cell membrane. In this PhD thesis, PEF technology was investigated with the aim of improving mass transfer in plant and animal foods by using it alone or in combination with conventional food processes. Different methods of evaluating electroporation for optimizing PEF processing parameters were investigated. In this respect, the degree of membrane permeabilization in plant and animal food matrices was investigated using electrical impedance spectroscopy, current-voltage measurements and magnetic resonance imaging. The research findings provided useful insights and calls for critical choice of electroporation assessment methods for the selection of adequate PEF treatment conditions. It was outlined that the effect of electroporation is highly dependent on the properties of the food matrix and secondary phenomena occurring in the cell structure undergoing PEF treatment, such as the water re-distribution in the tissue due to the exchange of fluids between intra- and extra-cellular environments. This study also confirmed the great potential of combining PEF technology with conventional food processes, with the main purpose of improving the quality of the food material and accelerating the kinetics of mass transfers, in both plant and animal tissues. Consistent reduction of acrylamide formation in potato crisps was achieved by monitoring key PEF process parameters and subsequent manufacturing steps. Kiwifruit snacks showed a significant reduction in drying kinetics when pre-treated with PEF, while their quality was well maintained. Finally, the research results showed that PEF pre-treatments can shorten the brine process as well as the rehydration kinetics of fish muscles.
Resumo:
The impellent global environmental issues related to plastic materials can be addressed by following two different approaches: i) the development of synthetic strategies towards novel bio-based polymers, deriving from biomasses and thus identifiable as CO2-neutral materials, and ii) the development of new plastic materials, such as biocomposites, which are bio-based and biodegradable and therefore able to counteract the accumulation of plastic waste. In this framework, this dissertation presents extensive research efforts have been devoted to the synthesis and characterization of polyesters based on various bio-based monomers, including ω-pentadecalactone, vanillic acid, 2,5-furan dicarboxylic acid, and 5-hydroxymethylfurfural. With the aim of achieving high molecular weight polyesters, different synthetic strategies have been used as melt polycondensation, enzymatic polymerization, ring-opening polymerization and chain extension reaction. In particular, poly(ethylene vanillate) (PEV), poly(ω-pentadecalactone) (PPDL), poly(ethylene vanillate-co-pentadecalactone) (P(EV-co-PDL)), poly(2-hydroxymethyl 5-furancarboxylate) (PHMF), poly(ethylene 2,5-furandicarboxylate) (PEF) with different amount of diethylene glycol (DEG) unit amount, poly(propylene 2,5-furandicarboxylate) (PPF), poly(hexamethylene 2,5-furandicarboxylate), (PHF) have been prepared and extensively characterized. To improve the lacks of poly(hydroxybutyrate-co-valerate) (PHBV), its minimal formulations with natural additives and its blending with medium chain length PHAs (mcl-PHAs) have been tested. Additionally, this dissertation presents new biocomposites based on polylactic acid (PLA), poly(butylene succinate) (PBS), and PHBV, which are polymers both bio-based and biodegradable. To maintain their biodegradability only bio-fillers have been taken into account as reinforcing agents. Moreover, the commitment to sustainability has further limited the selection and led to the exclusive use of agricultural waste as fillers. Detailly, biocomposites have been obtained and discussed by using the following materials: PLA and agro-wastes like tree pruning, potato peels, and hay leftovers; PBS and exhausted non-compliant coffee green beans; PHBV and industrial starch extraction residues.