945 resultados para polypropylene in-reactor alloys


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Detailed microscopic examination using optical and electron microscopes suggests that Al4C3, often observed in the central regions of magnesium grains on polished sections, is a potent substrate for primary Mg. Calculations of the crystallographic relationships between magnesium and Al4C3 further support the experimental observations. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The as-cast three-dimensional morphologies of alpha-Al-15(Fe,Mn)(3)Si-2 and beta-Al5FeSi intermetallics were investigated by serial sectioning. Large beta-Al5FeSi intermetallics were observed to grow around pre-existing dendrite arms. The alpha-Al-15(Fe,Mn)(3)Si-2 intermetallic particle was observed to have a central polyhedral particle and an external highly convoluted three-dimensional structure. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

From recent published data, it is still unclear whether combining additions of Na and Sr have synergistic effects or deleterious interactions, This paper clarifies the interactions between these two modifiers and investigates the effects of such interactions on alloy solidification and castability. It was found that combined additions of Sr and Na do not appear to cause improvement of the modification of the eutectic microstructure even after only a short period after addition. Na addition may promote Sr vaporization and/or oxidation kinetically. leading to a quicker loss of both modifiers, which is blamed for the rapid loss of the modification effect during melt holding. Quenching trials during the eutectic arrest indicate that addition of Sr into Na-modified melts does not alter the eutectic solidification behaviour The effect of Na on eutectic solidification dominates, and the eutectic is observed to evolve with a significant dependency on the thermal gradient, Combining Sr and Na additions produced no beneficial effects on porosity and casting defects. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Iron is the most common and detrimental impurity in aluminum casting alloys and has long been associated with an increase in casting defects. While the negative effects of iron are clear, the mechanism involved is not fully understood. It is generally believed to be associated with the formation of Fe-rich intermetallic phases. Many factors, including alloy composition, melt superheating, Sr modification, cooling, rate, and oxide bifilms, could play a role. In the present investigation, the interactions between iron and each individual element commonly present in aluminum casting alloys, were investigated using a combination of thermal analysis and interrupted quenching tests. The Fe-rich intermetallic phases were characterized using optical microscope, scanning electron microscope, and electron probe microanalysis (EPMA), and the results were compared with the predictions by Thermocalc. It was found that increasing the iron content changes the precipitation sequence of the beta phase, leading to the precipitation of coarse binary beta platelets at a higher temperature. In contrast, manganese, silicon, and strontium appear to suppress the coarse binary beta platelets, and Mn further promotes the formation of a more compact and less harmful a phase. They are therefore expected to reduce the negative effects of the phase. While reported in the literature, no effect of P on the amount of beta platelets was observed. Finally, attempts are made to correlate the Fe-rich intermetallic phases to the formation of casting defects. The role of the beta phase as a nucleation site for eutectic Si and the role of the oxide bifilms and AIP as a heterogeneous substrate of Fe intermetallics are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approach to the qualitative analysis of quenched microstructures in three dimensions is presented and demonstrated on unmodified and Sr-modified Al-10% Si samples. The samples were repeatedly polished to obtain a series of digital images through the depth of the microstructure. A three-dimensional reconstruction of the microstructure was obtained by assembling the images of the serial sections. Reconstructions were made of unmodified and Sr-modified Al-Si eutectic grains that were quenched during eutectic solidification. The three-dimensional reconstructions show that strontium modification changes the size and morphology of the Al-Si eutectic grains. Sr-modified eutectic grains are large approximately spherical grains and grow with a high interface velocity. In the unmodified alloy, many small eutectic grains grow from the dendrite arm tips. The unmodified eutectic grains appear to grow from the dendrite tips into the undercooled liquid, rather than back-filling the dendrite envelope, possibly continuing to grow in the same manner as the equiaxed dendrites. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of magnesium alloys show promise as engine block materials. However, a critical issue for the automotive industry is corrosion of the engine block by the coolant and this could limit the use of magnesium engine blocks. This work assesses the corrosion performance of conventional magnesium alloy AZ91D and a recently developed engine block magnesium alloy AM-SC1 in several commercial coolants. Immersion testing, hydrogen evolution measurement, galvanic current monitoring and the standard ASTM D1384 test were employed to reveal the corrosion performance of the magnesium alloys subjected to the coolants. The results show that the tested commercial coolants are corrosive to the magnesium alloys in terms of general and galvanic corrosion. The two magnesium alloys exhibited slightly different corrosion resistance to the coolants with AZ91D being more corrosion resistant than AM-SC1. The corrosivity varied from coolant to coolant. Generally speaking. an oraganic-acid based long life coolant was less corrosive to the magnesium alloys than a traditional coolant. Among the studied commercial coolants. Toyota long, life coolant appeared to be the most promising one. In addition. it was found that potassium fluoride effectively inhibited corrosion of the magnesium alloys in the studied commercial coolants. Both general and galvanic corrosion rates were significantly decreased by addition of KF, and there were no evident side effects on the other engine block materials, such as copper, solder. brass. steel and aluminium alloys, in terms of their corrosion performance. The ASTM D 1384 test further confirmed these results and suggested that Toyota long life coolant with 1%wt KF addition is a promising coolant for magnesium engine blocks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soldering alloys based oft the Sn-Cu alloy system are amongst the most favourable lead-free alternatives due to a range of attractive properties. Trace additions of Ni have been found to significantly improve the soldering characteristics of these alloys (reduced bridging etc.). This paper examines the mechanisms underlying the improvement in soldering properties of Sn-0.7 mass%Cu eutectic alloys modified with concentrations of Ni ranging front 0 to 1000 ppm. The alloys were investigated by thermal analysis during solidification, as well as optical/SEM microanalyses of fully solidified samples anti samples quenched during solidification. It is concluded that Ni additions dramatically alter the nucleation patterns and solidification behaviour of the Sn-Cu6Sn5 eutectic anti that these changes are related to the superior soldering characteristics of the Ni-modified Sn-0.7 mass%Cu alloys.