982 resultados para photoluminescence (PL)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of bound excitons (BE) is investigated for a GaAs/GaAlAs multiple quantum well (QW) system. The photoluminescence (PL) spectra are analysed as a function of the excitation energy. It was found that the carriers photogeneration, either in the barrier or directly in the well, do not play an important role on the BE formation. We conclude that defects localized at interfaces are ionized by of capture charges which in turn bound the free exciton (FE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports on the pure lithium tantalate (LiTaO3), europium (III)-doped LiTaO3 and magnesium (II)-europium (III)-doped LiTaO3 preparared by the polymeric precursor method, using four different powered samples of Eu3+ ion concentrations 0.1 to 1at %. Structural and optical properties of powders have been studied. The different possible sites occupied by the rare earth were examined. The phase contents and lattice parameters were studied by the Rietveld method and the structural disorder in the LiTaO3 host caused by Eu3+ ions was analyzed. Results indicated LiTaO3 free of secondary phases at 650°C and the photoluminescence (PL) emission spectra showed the characteristic sharp emission bands given by Eu3+ ions when they are excited at a wavelength of 399 nm. An increase of dopants contents caused a non-homogeneous broadening and showed a slightly larger one when Mg was added. A displacement of the transition 5D0-7F0 to shorter wavelengths as function of Eu3+ concentration was also noticed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the electronic structure of undoped AlGaAs/GaAs wide parabolic quantum wells (PQWs) with different well widths (1000 and 3000 ) were investigated by means of photoluminescence (PL) measurements. Due to the particular potential shape, the sample structure confines photocreated carriers with almost three-dimensional characteristics. Our data show that depending on the well width thickness it is possible to observe very narrow structures in the PL spectra, which were ascribed to emissions associated to the recombination of confined 1s-excitons of the parabolic potential wells. From our measurements, the exciton binding energies (of a few meV) were estimated. Besides the exciton emission, we have also observed PL emissions associated to electrons in the excited subbands of the PQWs. © 2010 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, zinc oxide powders were synthesized by microwave-assisted hydrothermal method in basic medium. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure ZnO phases were obtained after MH processing performed at 130°C/ 1h. FEG-SEM micrographs reveals that these nanostructures are made up of ZnO plates. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) in the different zinc powders. An orange PL emission when excited by 350 nm wavelength at room temperature was observad in the different powders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The infrared-to-visible frequency upconversion was investigated in Er 3+-doped Ga10Ge25S65 glass and in the transparent glass-ceramic obtained by heat-treatment of the glass above its glass-transition temperature. Continuous-wave and pulsed lasers operating at 980 nm and 1480 nm were used as excitation sources. The green (2H 11/2 → 4I15/2; 4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) photoluminescence (PL) signals due to the Er3+ ions were characterized. The PL decay times were influenced by energy transfer among Er3+ ions, by cross-relaxation processes and by energy transfer from the Er3+ ions to the host material. The PL from the Er3+ ions hosted in the crystalline phase was distinguished only when the glass-ceramic was excited by the 1480 nm pulsed laser. The excitation pathways responsible for the green and red PL bands are discussed to explain the differences between the spectra observed under continuous-wave and pulsed excitation. © 2013 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we report the development of an efficient and rapid microwave assisted solvothermal (MAS) method to prepare wurtzite ZnS nanoparticles at 413 K using different precursors. The materials obtained were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (MET) ultraviolet-visible (UV-vis) and photoluminescence (PL) measurements. The structure, surface chemical composition and optical properties were investigated as a function of the precursor. In addition, effects as well as merits of microwave heating on the processing and characteristics of ZnS nanoparticles obtained are reported. The possible formation mechanism and optical properties of these nanoparticles were also reported. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a combined theoretical and experimental study on the electronic structure and photoluminescence (PL) properties of beta zinc molybdate (β-ZnMoO4) microcrystals synthesized by the hydrothermal method has been employed. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopies. Their optical properties were investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy and PL measurements. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level have been carried out. XRD patterns, Rietveld refinement, FT-Raman and FT-IR spectra showed that these crystals have a wolframite-type monoclinic structure. The Raman and IR frequencies experimental results are in reasonable agreement with theoretically calculated results. UV-Vis absorption measurements shows an optical band gap value of 3.17 eV, while the calculated band structure has a value of 3.22 eV. The density of states indicate that the main orbitals involved in the electronic structure of β-ZnMoO4 crystals are (O 2p-valence band and Mo 4d-conduction band). Finally, PL properties of β-ZnMoO4 crystals are explained by means of distortions effects in octahedral [ZnO6] and [MoO6] clusters and inhomogeneous electronic distribution into the lattice with the electron density map. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germanium- and tellurium-based glasses have been largely studied due to their recognized potential for photonics. In this paper, we review our recent studies that include the investigation of the Stokes and anti-Stokes photoluminescence (PL) in different glass systems containing metallic and semiconductor nanoparticles (NPs). In the case of the samples with metallic NPs, the enhanced PL was attributed to the increased local field on the rare-earth ions located in the proximity of the NPs and/or the energy transfer from the metallic NPs to the rare-earth ions. For the glasses containing silicon NPs, the PL enhancement was mainly due to the energy transfer from the NPs to the Er3+ ions. The nonlinear (NL) optical properties of PbO-GeO 2 films containing gold NPs were also investigated. The experiments in the pico- and subpicosecond regimes revealed enhanced values of the NL refractive indices and large NL absorption coefficients in comparison with the films without gold NPs. The reported experiments demonstrate that germanate and tellurite glasses, having appropriate rare-earth ions doping and NPs concentration, are strong candidates for PL-based devices, all-optical switches, and optical limiting. © 2013 Cid Bartolomeu de Araujo et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lead zirconate titanate (PZT) was synthesized at the ratio of Zr/Ti=52/48 using two synthesis methods: the polymeric precursor method (PPM) and the microwave-assisted hydrothermal method (MAHM). The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size distribution by sedimentation, hysteresis measurements and photoluminescence (PL). The results showed that PZT powders are composed of tetragonal and rhombohedral phases. Different particle sizes and morphologies were obtained depending upon the synthesis method. From the hysteresis loop verified that PZT powders synthesized by the PPM have a typical loop of ferroelectric material and are more influenced by spatial charges while particles synthesized by the MAHM have a hysteresis loop similar to paraelectric material and are less influenced by spatial charges. Both samples showed PL behavior in the green region (525 nm) whereas the sample synthesized by the PPM showed higher intensity in spectra. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, the structural refinement, morphology and optical properties of barium strontium molybdate [(Ba1-x Sr x )MoO4 with x = 0, 0.25, 0.50, 0.75 and 1] crystals, synthesized by the co-precipitation (drop-by-drop) method, are reported. The crystals obtained were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform-Raman (FT-Raman) and Fourier transform-infrared (FT-IR) spectroscopies. The shapes of the crystals were observed by means of field-emission scanning electron microscopy (FE-SEM). The optical properties were investigated using ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement, and FT-Raman and FT-IR spectra showed that all of the crystals are monophasic with a scheelite-type tetragonal structure. The refined lattice parameters and atomic positions were employed to model the [BaO8], [SrO8] and [MoO4] clusters in the tetragonal lattices. The FE-SEM images indicate that increased x content produces a decrease in the crystal size and modifications in the crystal shape. UV-Vis spectra indicated a decrease in the optical band gap with an increase in x in the (Ba1-x Sr x )MoO4 crystals. Finally, a decrease in the intensity of PL emission is apparent with an increase in x up to 0.75 in the (Ba1-x Sr x )MoO4 crystal lattice when excited by a wavelength of 350nm, probably associated with the degree of structural order-disorder. © 2013 International Union of Crystallography Printed in Singapore - all rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC