964 resultados para phase-field models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human-made transformations to the environment, and in particular the land surface, are having a large impact on the distribution (in both time and space) of rainfall, upon which all life is reliant. Focusing on precipitation, soil moisture and near-surface temperature, we compare data from Phase 5 of the Climate Modelling Intercomparison Project (CMIP5), as well as blended observational–satellite data, to see how the interaction between rainfall and the land surface differs (or agrees) between the models and reality, at daily timescales. As expected, the results suggest a strong positive relationship between precipitation and soil moisture when precipitation leads and is concurrent with soil moisture estimates, for the tropics as a whole. Conversely a negative relationship is shown when soil moisture leads rainfall by a day or more. A weak positive relationship between precipitation and temperature is shown when either leads by one day, whereas a weak negative relationship is shown over the same time period between soil moisture and temperature. Temporally, in terms of lag and lead relationships, the models appear to be in agreement on the overall patterns of correlation between rainfall and soil moisture. However, in terms of spatial patterns, a comparison of these relationships across all available models reveals considerable variability in the ability of the models to reproduce the correlations between precipitation and soil moisture. There is also a difference in the timings of the correlations, with some models showing the highest positive correlations when precipitation leads soil moisture by one day. Finally, the results suggest that there are 'hotspots' of high linear gradients between precipitation and soil moisture, corresponding to regions experiencing heavy rainfall. These results point to an inability of the CMIP5 models to simulate a positive feedback between soil moisture and precipitation at daily timescales. Longer timescale comparisons and experiments at higher spatial resolutions, where the impact of the spatial heterogeneity of rainfall on the initiation of convection and supply of moisture is included, would be expected to improve process understanding further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quasi-optical interferometric technique capable of measuring antenna phase patterns without the need for a heterodyne receiver is presented. It is particularly suited to the characterization of terahertz antennas feeding power detectors or mixers employing quasi-optical local oscillator injection. Examples of recorded antenna phase patterns at frequencies of 1.4 and 2.5 THz using homodyne detectors are presented. To our knowledge, these are the highest frequency antenna phase patterns ever recovered. Knowledge of both the amplitude and phase patterns in the far field enable a Gauss-Hermite or Gauss-Laguerre beam-mode analysis to be carried out for the antenna, of importance in performance optimization calculations, such as antenna gain and beam efficiency parameters at the design and prototype stage of antenna development. A full description of the beam would also be required if the antenna is to be used to feed a quasi-optical system in the near-field to far-field transition region. This situation could often arise when the device is fitted directly at the back of telescopes in flying observatories. A further benefit of the proposed technique is simplicity for characterizing systems in situ, an advantage of considerable importance as in many situations, the components may not be removable for further characterization once assembled. The proposed methodology is generic and should be useful across the wider sensing community, e.g., in single detector acoustic imaging or in adaptive imaging array applications. Furthermore, it is applicable across other frequencies of the EM spectrum, provided adequate spatial and temporal phase stability of the source can be maintained throughout the measurement process. Phase information retrieval is also of importance to emergent research areas, such as band-gap structure characterization, meta-materials research, electromagnetic cloaking, slow light, super-lens design as well as near-field and virtual imaging applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used to simulate mass balances of Nigardsbreen (Norway) and Rhonegletscher (Switzerland). Simulations using reanalyses (ECMWF) for the period 1979–93 are in good agreement with in situ mass balance measurements for Nigardsbreen. The method is applied to multicentury integrations of coupled (ECHAM4/OPYC) and mixed-layer (ECHAM4/MLO) GCMs excluding external forcing. A high correlation between decadal variations in the North Atlantic oscillation (NAO) and mass balance of the glaciers is found. The dominant factor for this relationship is the strong impact of winter precipitation associated with the NAO. A high NAO phase means enhanced (reduced) winter precipitation for Nigardsbreen (Rhonegletscher), typically leading to a higher (lower) than normal annual mass balance. This mechanism, entirely due to internal variations in the climate system, can explain observed strong positive mass balances for Nigardsbreen and other maritime Norwegian glaciers within the period 1980–95. It can also partly be responsible for recent strong negative mass balances of Alpine glaciers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates the growth of error in baroclinic waves. It is found that stable or neutral waves are particularly sensitive to errors in the initial condition. Short stable waves are mainly sensitive to phase errors and the ultra long waves to amplitude errors. Analysis simulation experiments have indicated that the amplitudes of the very long waves become usually too small in the free atmosphere, due to the sparse and very irregular distribution of upper air observations. This also applies to the four-dimensional data assimilation experiments, since the amplitudes of the very long waves are usually underpredicted. The numerical experiments reported here show that if the very long waves have these kinds of amplitude errors in the upper troposphere or lower stratosphere the error is rapidly propagated (within a day or two) to the surface and to the lower troposphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase shift full bridge (PSFB) converter allows high efficiency power conversion at high frequencies through zero voltage switching (ZVS); the parasitic drain-to-source capacitance of the MOSFET is discharged by a resonant inductance before the switch is gated resulting in near zero turn-on switching losses. Typically, an extra inductance is added to the leakage inductance of a transformer to form the resonant inductance necessary to charge and discharge the parasitic capacitances of the PSFB converter. However, many PSFB models do not consider the effects of the magnetizing inductance or dead-time in selecting the resonant inductance required to achieve ZVS. The choice of resonant inductance is crucial to the ZVS operation of the PSFB converter. Incorrectly sized resonant inductance will not achieve ZVS or will limit the load regulation ability of the converter. This paper presents a unique and accurate equation for calculating the resonant inductance required to achieve ZVS over a wide load range incorporating the effects of the magnetizing inductance and dead-time. The derived equations are validated against PSPICE simulations of a PSFB converter and extensive hardware experimentations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modelled using RRKM theory, based on Eo values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k∞ values in the range 1.9 to 4.5 × 10-10 cm3 molecule-1 s-1. These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16 and 67% of the collision rates for these reactions. In the reaction of SiH2 + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalysed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H2O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The orientation of the heliospheric magnetic field (HMF) in near‒Earth space is generally a good indicator of the polarity of HMF foot points at the photosphere. There are times, however, when the HMF folds back on itself (is inverted), as indicated by suprathermal electrons locally moving sunward, even though they must ultimately be carrying the heat flux away from the Sun. Analysis of the near‒Earth solar wind during the period 1998–2011 reveals that inverted HMF is present approximately 5.5% of the time and is generally associated with slow, dense solar wind and relatively weak HMF intensity. Inverted HMF is mapped to the coronal source surface, where a new method is used to estimate coronal structure from the potential‒field source‒surface model. We find a strong association with bipolar streamers containing the heliospheric current sheet, as expected, but also with unipolar or pseudostreamers, which contain no current sheet. Because large‒scale inverted HMF is a widely accepted signature of interchange reconnection at the Sun, this finding provides strong evidence for models of the slow solar wind which involve coronal loop opening by reconnection within pseudostreamer belts as well as the bipolar streamer belt. Occurrence rates of bipolar‒ and pseudostreamers suggest that they are equally likely to result in inverted HMF and, therefore, presumably undergo interchange reconnection at approximately the same rate. Given the different magnetic topologies involved, this suggests the rate of reconnection is set externally, possibly by the differential rotation rate which governs the circulation of open solar flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present comprehensive ground-based and space-based in situ geosynchronous observations of a substorm expansion phase onset on 1 October 2005. The Double Star TC-2 and GOES-12 spacecraft were both located within the substorm current wedge during the substorm expansion phase onset, which occurred over the Canadian sector. We find that an onset of ULF waves in space was observed after onset on the ground by extending the AWESOME timing algorithm into space. Furthermore, a population of low-energy field-aligned electrons was detected by the TC-2 PEACE instrument contemporaneous with the ULF waves in space. These electrons appear to be associated with an enhancement of field-aligned Poynting flux into the ionosphere which is large enough to power visible auroral displays. The observations are most consistent with a near-Earth initiation of substorm expansion phase onset, such as the Near-Geosynchronous Onset (NGO) substorm scenario. A lack of data from further downtail, however, means other mechanisms cannot be ruled out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a detailed case study of the characteristics of auroral forms that constitute the first ionospheric signatures of substorm expansion phase onset. Analysis of the optical frequency and along-arc (azimuthal) wave number spectra provides the strongest constraint to date on the potential mechanisms and instabilities in the near-Earth magnetosphere that accompany auroral onset and which precede poleward arc expansion and auroral breakup. We evaluate the frequency and growth rates of the auroral forms as a function of azimuthal wave number to determine whether these wave characteristics are consistent with current models of the substorm onset mechanism. We find that the frequency, spatial scales, and growth rates of the auroral forms are most consistent with the cross-field current instability or a ballooning instability, most likely triggered close to the inner edge of the ion plasma sheet. This result is supportive of a near-Earth plasma sheet initiation of the substorm expansion phase. We also present evidence that the frequency and phase characteristics of the auroral undulations may be generated via resonant processes operating along the geomagnetic field. Our observations provide the most powerful constraint to date on the ionospheric manifestation of the physical processes operating during the first few minutes around auroral substorm onset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of global magnetospheric models, such as Space Weather Modeling Framework (SWMF), which can accurately reproduce and track space weather processes has high practical utility. We present an interval on 5 June 1998, where the location of the polar cap boundary, or open-closed field line boundary (OCB), can be determined in the ionosphere using a combination of instruments during a period encompassing a sharp northward to southward interplanetary field turning. We present both point- and time-varying comparisons of the observed and simulated boundaries in the ionosphere and find that when using solely the coupled ideal magnetohydrodynamic magnetosphere-ionosphere model, the rate of change of the OCB to a southward turning of the interplanetary field is significantly faster than that computed from the observational data. However, when the inner magnetospheric module is incorporated, the modeling framework both qualitatively, and often quantitatively, reproduces many elements of the studied interval prior to an observed substorm onset. This result demonstrates that the physics of the inner magnetosphere is critical in shaping the boundary between open and closed field lines during periods of southward interplanetary magnetic field (IMF) and provides significant insight into the 3-D time-dependent behavior of the Earth's magnetosphere in response to a northward-southward IMF turning. We assert that during periods that do not include the tens of minutes surrounding substorm expansion phase onset, the coupled SWMF model may provide a valuable and reliable tool for estimating both the OCB and magnetic field topology over a wide range of latitudes and local times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A perceived limitation of z-coordinate models associated with spurious diapycnal mixing in eddying, frontal flow, can be readily addressed through appropriate attention to the tracer advection schemes employed. It is demonstrated that tracer advection schemes developed by Prather and collaborators for application in the stratosphere, greatly improve the fidelity of eddying flows, reducing levels of spurious diapycnal mixing to below those directly measured in field experiments, ∼1 × 10−5 m2 s−1. This approach yields a model in which geostrophic eddies are quasi-adiabatic in the ocean interior, so that the residual-mean overturning circulation aligns almost perfectly with density contours. A reentrant channel configuration of the MIT General Circulation Model, that approximates the Antarctic Circumpolar Current, is used to examine these issues. Virtual analogs of ocean deliberate tracer release field experiments reinforce our conclusion, producing passive tracer solutions that parallel field experiments remarkably well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earth system models are increasing in complexity and incorporating more processes than their predecessors, making them important tools for studying the global carbon cycle. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes, with coupled climate-carbon cycle models that represent land-use change simulating total land carbon stores by 2100 that vary by as much as 600 Pg C given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous model evaluation methodologies. Here we assess the state-of-the-art with respect to evaluation of Earth system models, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeo data and (ii) metrics for evaluation, and discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute towards the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but it is also a challenge, as more knowledge about data uncertainties is required in order to determine robust evaluation methodologies that move the field of ESM evaluation from "beauty contest" toward the development of useful constraints on model behaviour.