993 resultados para pedagogía experimental
Resumo:
The problem of structural system identification when measurements originate from multiple tests and multiple sensors is considered. An offline solution to this problem using bootstrap particle filtering is proposed. The central idea of the proposed method is the introduction of a dummy independent variable that allows for simultaneous assimilation of multiple measurements in a sequential manner. The method can treat linear/nonlinear structural models and allows for measurements on strains and displacements under static/dynamic loads. Illustrative examples consider measurement data from numerical models and also from laboratory experiments. The results from the proposed method are compared with those from a Kalman filter-based approach and the superior performance of the proposed method is demonstrated. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The insertion reactions of zirconium(IV) n-butoxide and titanium(IV) n-butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion. The intermediate metallacycle extrudes a new heterocumulene, different from the two that have inserted leading to metathesis. As the reaction is reversible, catalytic metathesis is feasible. In stoichiometric reactions heterocumulene insertion, metathesis and metathesis cum insertion products are observed. However, catalytic amounts of the metal alkoxide primarily led to metathesis products. It is shown that zirconium alkoxides promote catalytic metathesis (isocyanates, carbon dioxide) more efficiently than the corresponding titanium alkoxide. The difference in the metathetic activity of these alkoxides has been explained by a computational study using model complexes Ti(OMe)(4) (1bTi) and Zr(OMe)(4) (1bZr). The computation was carried out at the B3LYP/LANL2DZ level of theory.
Resumo:
Notched three point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and during the fracture process acoustic emissions (AE) were simultaneously monitored. It was observed that AE energy could be related to fracture energy. An experimental study was done to understand the behavior of AE energy with parameters of concrete like its strength and size. In this study, AE energy was used as a quantitative measure of size independent specific fracture energy of concrete beams and the concepts of boundary effect and local fracture energy were used to obtain size independent AE energy from which size independent fracture energy was obtained. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The bipolar point spread function (PSF) corresponding to the Wiener filter tor correcting linear-motion-blurred pictures is implemented in a noncoherent optical processor. The following two approaches are taken for this implementation: (1) the PSF is modulated and biased so that the resulting function is non-negative and (2) the PSF is split into its positive and sign-reversed negative parts, and these two parts are dealt with separately. The phase problem associated with arriving at the pupil function from these modified PSFs is solved using both analytical and combined analytical-iterative techniques available in the literature. The designed pupil functions are experimentally implemented, and deblurring in a noncoherent processor is demonstrated. The postprocessing required (i.e., demodulation in the first approach to modulating the PSF and intensity subtraction in the second approach) are carried out either in a coherent processor or with the help of a PC-based vision system. The deblurred outputs are presented.
Resumo:
Molecular self-assembly is of key importance for the rational design of advanced materials. To investigate the causal relation between molecular structure and the consequent self-assembled microstructure, self-assembled tubules of diacetylenic lipids were studied. Circular-dichroism studies give experimental evidence that the formation of tubules is driven by chiral molecular packing, in agreement with recent theories of tubules. On the basis of these results, a molecular mechanism for the formation of tubules is proposed.
Resumo:
The phase separation in fluids close to a critical point can be observed in the form of either an interconnected pattern (critical case) or a disconnected pattern (off-critical case). These two regimes have been investigated in different ways. First, a sharp change in pattern is shown to occur very close to the critical point when the composition is varied. No crossover has been observed between the t1 behaviour (interconnected) and a t1/3 behaviour (disconnected), where t is time. This latter growth law, which occurs in the case of compact droplets, will be discussed. Second, it has been observed that a growing interconnected pattern leaves a signature in the form of small droplets. The origin of such a distribution will be discussed in terms of coalescence of domains. No distribution of this kind is observed in the off-critical case.
Resumo:
The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.
Resumo:
Study of fatigue phenomenon in composites requires a dynamic tool which can detect and identify different failure mechanisms involved. The tool should also be capable of monitoring the cumulative damage progression on-line. Acoustic Emission Technique has been utilized in the experimental investigations on unidirectional carbon fiber reinforced plastic (CFRP) composite specimens subjected to tension-tension fatigue. Amplitude as well as frequency distribution of Acoustic Emission (AE) signals have been studied to detect and characterize different failure mechanisms. For a quantitative measure of degradation of the material with fatigue load cycles, reduction in stiffness of the specimen has been measured intermittently. Ultrasonic imaging could give the information on the changes in the interior status of the material at different stages of fatigue life.
Resumo:
An interaction analysis of an axially loaded single pile and pile group with and without a pile cap in a layered soil medium has been investigated using the two-dimensional photoelastic method. A study of the pile or pile group behaviour has been made, varying the pile cap thickness as well as the embedded length of the pile in the hard stratum. The shear stress distribution along the pile-soil interface, non-dimensionalized settlement values of the single pile and the interaction factor for the pile group have been presented. Wherever possible, the results of the present analysis have been compared with available numerical solutions.
Resumo:
Variable cross-sectional area ducts are often used for attenuation at lower frequencies (of the order of firing frequency), whereas concentric tube resonators provide attenuation at relatively higher frequencies. In this paper, analysis of one dimensional control volume approach of conical concentric tube resonators is validated experimentally. The effects of mean flow and taper are investigated. The experimental setup is specially designed to measure the pressure transfer function in the form of Level Difference or Noise Reduction across the test muffler. It is shown that there is a reasonably good agreement between the predicted values of the Noise Reduction and the measured ones for incompressible mean flow as well as stationary medium. (C) 2011 Institute of Noise Control Engineering.
Resumo:
We report here on the results of a series of experiments carried out on a turbulent spot in a distorted duct to study the effects of a divergence with straight streamlines preceded by a short stretch of transverse streamline curvature, both in the absence of any pressure gradient. It is found that the distortion produces substantial asymmetry in the spot: the angles at which the spot cuts across the local streamlines are altered dramatically (in contradiction of a hypothesis commonly made in transition zone modelling), and the Tollmien-Schlichting waves that accompany the wing tips of the spot are much stronger on the outside of the bend than on the inside. However there is no strong effect on the internal structure of the spot and the eddies therein, or on such propagation characteristics as overall spread rate and the celerities of the leading and trailing edges. Both lateral streamline curvature and non-homogeneity of the laminar boundary layer into which the spot propagates are shown to be strong factors responsible for the observed asymmetry. It is concluded that these factors produce chiefly a geometric distortion of the coherent structure in the spot, but do not otherwise affect its dynamics in any significant way.
Resumo:
Results of performance measurement of a small cooling capacity laboratory model of an adsorption refrigeration system for thermal management of electronics are compiled. This adsorption cooler was built with activated carbon as the adsorbent and HFC 134a as the refrigerant to produce a cooling capacity under 5 W using waste heat up to 90 degrees C. The thermal compression process is obtained from an ensemble of four solid sorption compressors. Parametric study was conducted with cycle times of 16 and 20 min, heat source temperatures from 73 to 87 degrees C and cooling loads from 3 to 4.9W. Overall system performance is analyzed using two indicators, namely, cooling effectiveness and normalized exergetic efficiency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A detailed theoretical study of solvation dynamics in water is presented. The motivation of the present study comes from the recent experimental observation that the dynamics of solvation of an ion in water is ultrafast and the solvation time correlation function decays with a time constant of about 55 fs. The slower decay in the long time can be described by a sum of two exponentials with time constants equal to 126 and 880 fs. The molecular theory (developed earlier) predicts a time constant equal to 52 fs for the initial Gaussian decay and time constants equal to 134 and 886 fs for the two exponential components at the long time. This nearly perfect agreement is obtained by using the most detailed dynamical information available in the literature. The present study emphasizes the importance of the intermolecular vibrational band originating from the O...O stretching mode of the O�H...O units in the initial dynamics and raises several interesting questions regarding the nature of the decay of this mode. We have also studied the effects of isotope substitution on solvation dynamics. It is predicted that a significant isotope effect may be observed in the long time. The experimental results have also been compared with the prediction of the dynamic mean spherical approximation (DMSA); the agreement is not satisfactory at the long time. It is further found that the molecular theory and the DMSA lead to virtually identical results if the translational modes of the solvent molecules are neglected in the former. DMSA has also been used to investigate the dynamics of solvation of a dipolar solute in water. It is found that the dynamics of dipolar solvation exhibit features rather different from those of ion solvation. © 1995 American Institute of Physics.
Resumo:
Experimental charge density distribution in 2, 5-dichloro-1, 4-benzoquinone has been carried out using high resolution X-ray diffraction data at 90 K to quantitatively evaluate the nature of C-Cl center dot center dot center dot O=C halogen bond in molecular crystals. Additionally, the halogen bond is studied from geometrical point of view and the same has been visualized using Hirshfeld surface analysis. The obtained results from experimental charge density analysis are compared with periodic quantum calculations using B3LYP 6-31G(d,p) level of theory. The topological values at bond critical point, three-dimensional static deformation density features and electrostatic potential isosurfaces unequivocally establish the attractive nature of C-Cl center dot center dot center dot O=C halogen bond in crystalline lattice.
Resumo:
The subsurface microhardness mapping technique of Chaudhri was utilized to determine the shape, size and distribution of plastic strain underneath conical indenters of varying semi-apex angles, alpha (55 degrees, 65 degrees and 75 degrees). Results show that the elastic-plastic boundary under the indenters is elliptical in nature, contradicting the expanding cavity model, and the ellipticity increases with alpha. The maximum plastic strain immediately under the indenter was found to decrease with increasing alpha. Complementary finite-element analysis was conducted to examine the ability of simulations to capture the experimental observations. A comparison of computational and experimental results indicates that the plastic strain distributions as well as the maximum strains immediately beneath the indenter do not match, suggesting that simulation of sharp indentation requires further detailed studies for complete comprehension. Representative strains, epsilon(r), evaluated as the volume-average strains within the elastic-plastic boundary, decrease with increasing alpha and are in agreement with those estimated by using the dimensional analysis. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.