926 resultados para peak to side lobe ratio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early detection of glaucoma relies on a detailed knowledge of how the normal optic nerve (ONH) varies within the population. The purpose of this study focused on two main areas; 1. To explore the optic nerve head appearance in the normal optometric population and compare the south Asian (principally Pakistani) with the European white population, correcting for possible ocular and non-ocular influences in a multiple regression model. The main findings were: • The optic discs of the South Asian (SA) and White European (WE) populations were not statistically different in size. The SA group possessed discs with increased cupping and thinner neuro-retinal rims (NRR) compared with the WE group. The SA group also demonstrated a more vertically oval shape than the WE population. These differences were significant at the p<0.01 level. • The upper limits of inter-eye asymmetry were: ≤0.2 for cup to disc area ratio, and 3mmHg for intra-ocular pressure (IOP) for both ethnic groups and this did not increase with age. IOP asymmetry did not vary with gender, ethnicity or a family history of glaucoma and was independent of ONH asymmetry. ONH and IOP asymmetry are therefore independent risk factors when screening for glaucoma for both ethnic groups. 2. To investigate the validity of the ISNT rule: inferior> superior> nasal> temporal NRR thickness in the optometric population. The main findings were: • As disc size increased the disc become rounder and less vertically oval in shape. Vertically oval discs had thicker superior and inferior NRRs and thinner nasal and temporal NRRs compared with rounder disc shapes due to cup shape being independent of disc shape. Vertically oval discs were therefore more likely to obey the ISNT rule than larger rounder discs. • The ISNT rule has a low adherence in our sample of normal eyes (5.7%). However, by removing the nasal sector to become the IST rule, 74.5% of normal eyes obeyed. SA eyes and female gender were more likely to obey the ISNT rule due to increased disc ovality. The IST rule is independent of disc shape and therefore more suitable for assessing discs from both ethnic backgrounds. Obeying the ISNT rule or IST rule was not related to disc or cup size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics, gas residence time, temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively, resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study, the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel single-step technique for the apodization of planar waveguide Bragg gratings based on the polarization control method is proposed. First results are presented, showing successful side-lobe suppression in the reflection spectrum of the gratings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have theoretically and experimentally designed and demonstrated an all-fiber polarization interference filter (AFPIF), which is formed by a polarization-maintaining (PM) fiber cavity structure utilizing two 45° tilted fiber gratings (45°-TFGs) inscribed by UV laser on the PM fiber. Such a filter could generate modulated transmission of linear polarization status. It has been revealed that the modulation depth of the transmission depends on the coupling angle between the 45°-TFGs and the PM fiber cavity. When the two 45°-TFGs in PM fiber are oriented at 45° to the principal axis of the PM fiber cavity, the maximum modulation depth is achievable. Due to the thermal effect on birefringence of the PM fiber, the AFPIF can be tuned over a broad wavelength range just by simple thermal tuning of the cavity. The experiment results show that the temperature tuning sensitivity is proportional to the length ratio of the PM fiber cavity under heating. For 18 and 40 cm long cavities with 6 cm part under heating, the thermal tuning sensitivities are 0.616 and 0.31 nm/° C, respectively, which are almost two orders of magnitude higher than normal fiber Bragg gratings. © 1983-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder cancer is among the most common cancers worldwide (4th in men). It is responsible for high patient morbidity and displays rapid recurrence and progression. Lack of sensitivity of gold standard techniques (white light cystoscopy, voided urine cytology) means many early treatable cases are missed. The result is a large number of advanced cases of bladder cancer which require extensive treatment and monitoring. For this reason, bladder cancer is the single most expensive cancer to treat on a per patient basis. In recent years, autofluorescence spectroscopy has begun to shed light into disease research. Of particular interest in cancer research are the fluorescent metabolic cofactors NADH and FAD. Early in tumour development, cancer cells often undergo a metabolic shift (the Warburg effect) resulting in increased NADH. The ratio of NADH to FAD ("redox ratio") can therefore be used as an indicator of the metabolic status of cells. Redox ratio measurements have been used to differentiate between healthy and cancer breast cells and to monitor cellular responses to therapies. Here, we have demonstrated, using healthy and bladder cancer cell lines, a statistically significant difference in the redox ratio of bladder cancer cells, indicative of a metabolic shift. To do this we customised a standard flow cytometer to excite and record fluorescence specifically from NADH and FAD, along with a method for automatically calculating the redox ratio of individual cells within large populations. These results could inform the design of novel probes and screening systems for the early detection of bladder cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liana Artabotrys hexapetalus (L.f.) Bhand., which is widely planted in the Tropics and native to African rain forests, produced new reiterations (new leader shoots) normally and after damage induced by Hurricane Andrew (August 24, 1992). In each new orthotropic shoot, there is a gradient in lateral branch structures from basal thorns, to vegetative leafy branches, to distal leafy flowering branches. We noted that reiterations developing in shade had more thorns than similar reiterations developing in full sun. Tents with clear (66% photosynthetically active radiation [PAR]) and shaded plastic film (12%–14% PAR) were placed over nodes when the axillary buds began to expand to produce reiteration shoots. After 2 mo of growth inside the tents and in the open, the types of lateral outgrowths (thorn vs. branch) were recorded. Shoots in spectrally neutral shade (red to far red of full sun) and spectrally altered shade (red to far red of canopy shade) produced significantly more thorns at the lower nodes of the shoots as compared to those in full sun. Shoots in control clear plastic tents were the same as those in full sun. We conclude that the fate of lateral bud development is controlled by irradiance (light level) but not by light quality. Increased thorn production in shade could be advantageous to plants growing in the deep shade of rain forests. Thorns in the self-shaded regions of the plant, and well below the forest canopy, could aid in protection from herbivory and in climbing by acting as hooks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution study of the H(e,e'K+)Λ,Σ 0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Σ0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (∼0.07 (GeV/c) 2) and W∼2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (&thetas;CM∼6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and &thetas;CM and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Σ 0/Λ production ratio were performed at &thetas; CM∼6°, where data are not available. Finally, data for the measurements of the differential cross sections and the Σ 0/Λ production were binned in Q2, W and &thetas;CM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-Dimensional (3-D) imaging is vital in computer-assisted surgical planning including minimal invasive surgery, targeted drug delivery, and tumor resection. Selective Internal Radiation Therapy (SIRT) is a liver directed radiation therapy for the treatment of liver cancer. Accurate calculation of anatomical liver and tumor volumes are essential for the determination of the tumor to normal liver ratio and for the calculation of the dose of Y-90 microspheres that will result in high concentration of the radiation in the tumor region as compared to nearby healthy tissue. Present manual techniques for segmentation of the liver from Computed Tomography (CT) tend to be tedious and greatly dependent on the skill of the technician/doctor performing the task. ^ This dissertation presents the development and implementation of a fully integrated algorithm for 3-D liver and tumor segmentation from tri-phase CT that yield highly accurate estimations of the respective volumes of the liver and tumor(s). The algorithm as designed requires minimal human intervention without compromising the accuracy of the segmentation results. Embedded within this algorithm is an effective method for extracting blood vessels that feed the tumor(s) in order to plan effectively the appropriate treatment. ^ Segmentation of the liver led to an accuracy in excess of 95% in estimating liver volumes in 20 datasets in comparison to the manual gold standard volumes. In a similar comparison, tumor segmentation exhibited an accuracy of 86% in estimating tumor(s) volume(s). Qualitative results of the blood vessel segmentation algorithm demonstrated the effectiveness of the algorithm in extracting and rendering the vasculature structure of the liver. Results of the parallel computing process, using a single workstation, showed a 78% gain. Also, statistical analysis carried out to determine if the manual initialization has any impact on the accuracy showed user initialization independence in the results. ^ The dissertation thus provides a complete 3-D solution towards liver cancer treatment planning with the opportunity to extract, visualize and quantify the needed statistics for liver cancer treatment. Since SIRT requires highly accurate calculation of the liver and tumor volumes, this new method provides an effective and computationally efficient process required of such challenging clinical requirements.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compact thermal-fluid systems are found in many industries from aerospace to microelectronics where a combination of small size, light weight, and high surface area to volume ratio fluid networks are necessary. These devices are typically designed with fluid networks consisting of many small parallel channels that effectively pack a large amount of heat transfer surface area in a very small volume but do so at the cost of increased pumping power requirements. ^ To offset this cost the use of a branching fluid network for the distribution of coolant within a heat sink is investigated. The goal of the branch design technique is to minimize the entropy generation associated with the combination of viscous dissipation and convection heat transfer experienced by the coolant in the heat sink while maintaining compact high heat transfer surface area to volume ratios. ^ The derivation of Murray's Law, originally developed to predict the geometry of physiological transport systems, is extended to heat sink designs which minimze entropy generation. Two heat sink designs at different scales are built, and tested experimentally and analytically. The first uses this new derivation of Murray's Law. The second uses a combination of Murray's Law and Constructal Theory. The results of the experiments were used to verify the analytical and numerical models. These models were then used to compare the performance of the heat sink with other compact high performance heat sink designs. The results showed that the techniques used to design branching fluid networks significantly improves the performance of active heat sinks. The design experience gained was then used to develop a set of geometric relations which optimize the heat transfer to pumping power ratio of a single cooling channel element. Each element can be connected together using a set of derived geometric guidelines which govern branch diameters and angles. The methodology can be used to design branching fluid networks which can fit any geometry. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraoperative neurophysiologic monitoring is an integral part of spinal surgeries and involves the recording of somatosensory evoked potentials (SSEP). However, clinical application of IONM still requires anywhere between 200 to 2000 trials to obtain an SSEP signal, which is excessive and introduces a significant delay during surgery to detect a possible neurological damage. The aim of this study is to develop a means to obtain the SSEP using a much less, twelve number of recordings. The preliminary step involved was to distinguish the SSEP with the ongoing brain activity. We first establish that the brain activity is indeed quasi-stationary whereas an SSEP is expected to be identical every time a trial is recorded. An algorithm was developed using Chebychev time windowing for preconditioning of SSEP trials to retain the morphological characteristics of somatosensory evoked potentials (SSEP). This preconditioning was followed by the application of a principal component analysis (PCA)-based algorithm utilizing quasi-stationarity of EEG on 12 preconditioned trials. A unique Walsh transform operation was then used to identify the position of the SSEP event. An alarm is raised when there is a 10% time in latency deviation and/or 50% peak-to-peak amplitude deviation, as per the clinical requirements. The algorithm shows consistency in the results in monitoring SSEP in up to 6-hour surgical procedures even under this significantly reduced number of trials. In this study, the analysis was performed on the data recorded in 29 patients undergoing surgery during which the posterior tibial nerve was stimulated and SSEP response was recorded from scalp. This method is shown empirically to be more clinically viable than present day approaches. In all 29 cases, the algorithm takes 4sec to extract an SSEP signal, as compared to conventional methods, which take several minutes. The monitoring process using the algorithm was successful and proved conclusive under the clinical constraints throughout the different surgical procedures with an accuracy of 91.5%. Higher accuracy and faster execution time, observed in the present study, in determining the SSEP signals provide a much improved and effective neurophysiological monitoring process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution study of the H(e,e'K+)Λ,Σ0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Σ0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (∼0.07 (GeV/c)2) and W∼2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (θCM~6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and θCM, and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Σ0/Λ production ratio were performed at θCM, where data are not available. Finally, data for the measurements of the differential cross sections and the Σ0/Λ production were binned in Q2, W and θCM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Polycystic ovary syndrome (PCOS) whose classic features (menstrual irregularity of oligo/ amenorrhea type, chronic anovulation, infertility and hyperandrogenism clinical and/ or biochemical), is associated with aspects of metabolic syndrome (MS), as obesity and insulin resistance. The level of obesity determines different levels of inflammation, increasing cytokines participants of metabolic and endocrine functions, beyond modulate the immune response. Metabolic changes, added to the imbalance of sex hormones underlying irregular menstruation observed in (PCOS) can trigger allergic processes and elevation of total and specific IgE antibodies indicate that a sensitization process was started. Objective: To evaluate the influence of PCOS on biochemical parameters and levels of total and specific IgE to aeroallergens in obese women. Methods: After approval by the Committee of Ethics in Research, were recruited 80 volunteers with BMI ≥ 30 kg/m2 and age between 18 and 45 years. Among these, 40 with PCOS according to the Rotterdam criteria and 40 women without PCOS (control group). All participants were analysed with regard to anthropometric, clinical, gynecological parameters, interviewed using a questionnaire, and underwent blood sampling for realization of laboratory tests of clinical biochemistry: Total cholesterol, LDL-cholesterol, HDL- cholesterol, Triglycerides, Fasting glucose, Urea, Creatinine, Aspartate aminotransferase (AST), Alanine aminotransferase (ALT) and immunological: total and specific IgE to Dermatophagoides pteronyssinus, Blomia tropicalis, Dermatophagoides farinae and Dermatophagoides microceras.Statistical analysis was performed using SPSS 15.0 software through the chi-square tests, Fisher, Student t test and binary logistic regression, with significance level (p <0.05). Results: It was observed in the group of obese women with PCOS that 29 (72.5%) had menstrual cycle variable and 27 (67.5%) had difficulty getting pregnant. According to waist-hip ratio, higher average was also observed in obese PCOS (0.87). Blood level of HDL (36.9 mg/dL) and ALT (29.3 U/L) were above normal levels in obese women with PCOS, with statistically significant relationship. In the analysis of total and specific IgE to D. pteronyssinus high results were also prevalent in obese PCOS, with blood level (365,22 IU/mL) and (6.83 kU/L), respectively, also statistically significant. Conclusions: Observed predominance of cases with high levels of total IgE in the group of obese women with PCOS, 28 (70%) of the participants, whose mean blood concentration of the group was 365.22 IU/mL. In the analysis of Specific IgE between the groups, the allergen Dermatophagoides pteronyssinus showed greater dispersion and average the results of sensitization in the group of obese PCOS, whose mean blood concentration was 6.83 kU/l. Keywords: Obesity, Allergens and Polycystic Ovary Syndrome

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival models deals with the modelling of time to event data. In certain situations, a share of the population can no longer be subjected to the event occurrence. In this context, the cure fraction models emerged. Among the models that incorporate a fraction of cured one of the most known is the promotion time model. In the present study we discuss hypothesis testing in the promotion time model with Weibull distribution for the failure times of susceptible individuals. Hypothesis testing in this model may be performed based on likelihood ratio, gradient, score or Wald statistics. The critical values are obtained from asymptotic approximations, which may result in size distortions in nite sample sizes. This study proposes bootstrap corrections to the aforementioned tests and Bartlett bootstrap to the likelihood ratio statistic in Weibull promotion time model. Using Monte Carlo simulations we compared the nite sample performances of the proposed corrections in contrast with the usual tests. The numerical evidence favors the proposed corrected tests. At the end of the work an empirical application is presented.