964 resultados para orbital TIG welding
Resumo:
The pulsar IGR J16393-4643 belongs to a class of highly absorbed supergiant high-mass X-ray binaries (HMXBs), characterized by a very high column density of absorbing matter. We present the results of simultaneous broad-band pulsation and spectrum analysis from a 44-ks Suzaku observation of the source. The orbital intensity profile created with the Swift Burst Alert Telescope (Swift-BAT) light curve shows an indication of IGR J16393-4643 being an eclipsing system with a short eclipse semi-angle theta(E) similar to 17 degrees. For a supergiant companion star with a 20-R-circle dot radius, this implies an inclination of the orbital plane in the range 39 degrees-57 degrees, whereas for a main-sequence B star as the companion with a 10-R-circle dot radius, the inclination of the orbital plane is in the range 60 degrees-77 degrees. Pulse profiles created for different energy bands have complex morphology, which shows some energy dependence and increases in pulse fraction with energy. We have also investigated broad-band spectral characteristics, phase-averaged spectra and resolving the pulse phase into peak and trough phases. The phase-averaged spectrum has a very high N-H(similar to 3 x 10(23) cm(-2)) and is described by a power law (Gamma similar to 0.9) with a high-energy cut-off above 20 keV. We find a change in the spectral index in the peak and trough phases, implying an underlying change in the source spectrum.
Resumo:
The existence of three centered C=O...H(N)...X-C hydrogen bonds (H-bonds) involving organic fluorine and other halogens in diphenyloxamide derivatives has been explored by NMR spectroscopy and quantum theoretical studies. The three centered H-bond with the participation of a rotating CF3 group and the F...H-N intramolecular hydrogen bonds, a rare observation of its kind in organofluorine compounds, has been detected. It is also unambiguously established by a number of one and two dimensional NMR experiments, such as temperature perturbation, solvent titration, N-15-H-1 HSQC, and F-19-H-1 HOESY, and is also confirmed by theoretical calculations, such as quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and non-covalent interaction (NCI).
Resumo:
A generalized explanation is provided for the existence of the red-and blue-shifting nature of X-Z bonds (Z = H, halogens, chalcogens, pnicogens, etc.) in X-Z center dot center dot center dot Y complexes based on computational studies on a selected set of weakly bonded complexes and analysis of existing literature data. The additional electrons and orbitals available on Z in comparison to H make for dramatic differences between the H-bond and the rest of the Z-bonds. The nature of the X-group and its influence on the X-Z bond length in the parent X-Z molecule largely controls the change in the X-Z bond length on X-Z center dot center dot center dot Y bond formation; the Y-group usually influences only the magnitude of the effects controlled by X. The major factors which control the X-Z bond length change are: (a) negative hyperconjugative donation of electron density from X-group to X-Z sigma* antibonding molecular orbital (ABMO) in the parent X-Z, (b) induced negative hyperconjugation from the lone pair of electrons on Z to the antibonding orbitals of the X-group, and (c) charge transfer (CT) from the Y-group to the X-Z sigma* orbital. The exchange repulsion from the Y-group that shifts partial electron density at the X-Z sigma* ABMO back to X leads to blue-shifting and the CT from the Y-group to the sigma* ABMO of X-Z leads to red-shifting. The balance between these two opposing forces decides red-, zero- or blue-shifting. A continuum of behaviour of X-Z bond length variation is inevitable in X-Z center dot center dot center dot Y complexes.
Resumo:
This paper presents the first microwave spectroscopic investigation on hexafluoroisopropanol (HFIP). A pulsed nozzle Fourier transform microwave spectrometer has been used to determine the rotational constants for HFIP as A = 2105.12166(18) MHz, B = 1053.99503(12) MHz, and C = 932.33959(13) MHz. In addition, five isotopologues of HFIP have been observed experimentally to determine the accurate structure of HFIP. The observed spectrum could be assigned to the most stable conformer of HFIP, called antiperiplanar. Available spectroscopic information and ab initio calculations on five prototype molecules helped in exploring the torsional behavior of molecules having a CF3-C-CF3 group. Two-dimensional potential energy surfaces have been analyzed for all molecules, which explained the presence/absence of doubling in the rotational transitions. With the help of natural bond orbital (NBO) analysis, reasons for the conformational preference of HFIP have been explained.
Resumo:
The main aim of the present work is to analyze the influence of external weld flash on the formability of friction stir welding sheets through in-plane plane-strain formability tests. The load-extension behavior and forming limit strains are measured to quantify the formability. The influence of friction stir welding parameters on the height of weld flash was also studied. The base materials used for welding trials are AA6061T6 and AA5052H32 alloy sheets of 2.1-mm thickness. It is observed that the influence of external weld flash on the maximum load and total extension for all the friction stir welding conditions is negligible. The effect of weld flash on the limiting major strain is also insignificant. But the presence of weld flash has changed the limiting minor strain, more toward plane-strain condition, indicating the change in strain-path toward plane-strain. This is due to the strain taken by weld flash, along with the major strain, minor strain, and thickness strain in the friction stir welding sheet plane because of constancy of volume. The formation of weld flash and its height are affected synergistically by the axial force and temperature development during friction stir welding. The higher the axial force and temperature, the higher the flash height.
Resumo:
A computational study of the interaction half-sandwich metal fragments (metal=Re/W, electron count=d(6)), containing linear nitrosyl (NO+), carbon monoxide (CO), trifluorophosphine (PF3), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO+. Electron-withdrawing ligands like NO+ lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. (C) 2015 Wiley Periodicals, Inc.
Resumo:
We study the canted magnetic state in Sr2IrO4 using fully relativistic density functional theory (DFT) including an on-site Hubbard U correction. A complete magnetic phase diagram with respect to the tetragonal distortion and the rotation of IrO6 octahedra is constructed, revealing the presence of two types of canted to collinear magnetic transitions: a spin-flop transition with increasing tetragonal distortion and a complete quenching of the basal weak ferromagnetic moment below a critical octahedral rotation. Moreover, we put forward a scheme to study the anisotropic magnetic couplings by mapping magnetically constrained noncollinear DFT onto a general spin Hamiltonian. This procedure allows for the simultaneous account and direct control of the lattice, spin, and orbital interactions within a fully ab initio scheme. We compute the isotropic, single site anisotropy and Dzyaloshinskii-Moriya (DM) coupling parameters, and clarify that the origin of the canted magnetic state in Sr2IrO4 arises from the structural distortions and the competition between isotropic exchange and DM interactions.
Resumo:
The electronic structure of the (La0.8Sr0.2)(0.98)Mn1-xCrxO3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La, Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L-3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d-O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t(2g) up arrow state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t(2g) up arrow state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p-Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La, Sr)MnO3 is presented. (C) 2015 AIP Publishing LLC.
Resumo:
This paper reports microwave spectroscopic and theoretical investigations on the interaction of water with hexafluoroisopropanol (HFIP). The HFIP monomer can exist in two conformations, antiperiplanar (AP) and synclinical (SC). The former is about 5 kJ mol(-1) more stable than the latter. Theoretical calculations predicted three potential minima for the complex, two having AP and one having SC conformations. Though, the binding energy for the HFIP(SC)...H2O turned out to be larger than that for the other two conformers having HFIP in the AP form, the global minimum for the complex in the potential energy hypersurface had HFIP in the AP form. Experimental rotational constants for four isotopologues measured using a pulsed nozzle Fourier transform microwave spectrometer, correspond to the global minimum in the potential energy hypersurface. The structural parameters and the internal dynamics of the complex could be determined from the rotational spectra of the four isotopologues. The global minimum has the HFIP(AP) as a hydrogen bond donor forming a strong hydrogen bond with H2O. To characterize the strength of the bonding and to probe the other interactions within the complex, atoms in molecules, non-covalent interaction index and natural bond orbital theoretical analyses have been performed.
Resumo:
Experimental charge density analysis combined with the quantum crystallographic technique of X-ray wavefunction refinement (XWR) provides quantitative insights into the intra-and intermolecular interactions formed by acetazolamide, a diuretic drug. Firstly, the analysis of charge density topology at the intermolecular level shows the presence of exceptionally strong interaction motifs such as a DDAA-AADD (D-donor, A-acceptor) type quadruple hydrogen bond motif and a sulfonamide dimer synthon. The nature and strength of intra-molecular S center dot center dot center dot O chalcogen bonding have been characterized using descriptors from the multipole model (MM) and XWR. Although pure geometrical criteria suggest the possibility of two intra-molecular S center dot center dot center dot O chalcogen bonded ring motifs, only one of them satisfies the ``orbital geometry'' so as to exhibit an interaction in terms of an electron density bond path and a bond critical point. The presence of `s-holes' on the sulfur atom leading to the S center dot center dot center dot O chalcogen bond has been visualized on the electrostatic potential surface and Laplacian isosurfaces close to the `reactive surface'. The electron localizability indicator (ELI) and Roby bond orders derived from the `experimental wave function' provide insights into the nature of S center dot center dot center dot O chalcogen bonding.
Resumo:
Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic- metal transition at T-C = 180 K and transforms into a ferromagnetic insulator below T-MI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T-C to T-MI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) similar to 3.5(k(B)T(MI)) similar to 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U similar to 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t(2g) up-spin band favor a low-energy Peierls metal-insulator transition.
Resumo:
Bi1-xCaxFe1-xCoxO3 nanoparticles with x=0.0, 0.05, 0.10 and 0.15 were successfully synthesized by cost effective tartaric acid based sol gel route. The alkali earth metal Ca2+ ions and transition metal Co3+ ions codoping at A and B-sites of BiFeO3 results in structural distortion and phase transformation. Rietveld refinement of XRD patterns suggested the coexistence of rhombohedral and orthorhombic phases in codoped BiFeO3 samples. Both XRD and Raman scattering studies showed the compressive lattice distortion in the samples induced by codoping of Ca2+ and Co3+ ions. Two-phonon Raman spectra exhibited the improvement of magnetization in these samples. X-ray photoelectron spectroscopy (XPS) showed the dominancy of Fe3+ and Co3+ oxidation states along with the shifting of the binding energy of Bi 4f orbital which confirms the substitution Ca2+ at Bi-site. The magnetic study showed the enhancement in room temperature ferromagnetic behavior with co-substitution consistent with Rama analysis. The gradual change in line shape of electron spin resonance spectra indicated the local distortion induced by codoping. (C) 2015 Published by Elsevier Ltd and Techna Group S.r.l.
Low temperature FTIR, Raman, NMR spectroscopic and theoretical study of hydroxyethylammonium picrate
Resumo:
A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H center dot center dot center dot OC type between the hydroxyethylammonium cation and the picrate.C-13 and H-1 NMR spectroscopic analysis are also presented for the DMSO-d(6) solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The ``synthetic dimension'' proposal A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M internal states (''flavors'') in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension system. We show that this system is equivalent to particles with SU(M) symmetric interactions] experiencing an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site localized in the usual 1D optical lattice, is deformed to a nonlocal object (''squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in conventional experimental systems.
Resumo:
The relative energies of triangular face sharing condensed macro polyhedral carboranes: CB20H18 and C2B19H18+ derived from mono- and di-substitution of carbons in (4) B21H18- is calculated at B3LYP/6-31G* level. The relative energies, H center dot center dot center dot H non-bonding distances, NICS values, topological charge analysis and orbital overlap compatibility connotes the face sharing condensed macro polyhedral mono-carboranes, 8 (4-CB20H18) to be the lowest energy isomer. The di-carba- derivative, (36) 4,4'a-C2B19H18+ with carbons substituted in a different B-12 cage in (4) B21H18- in anti-fashion is the most stable isomer among 28 possibilities. This structure has less non-bonding H center dot center dot center dot H interaction and is in agreement with orbital-overlap compatibility, and these two have the pivotal role in deciding the stability of these clusters. An estimate of the inherent stability of these carboranes is made using near-isodesmic equations which show that CB20H18 (8) is in the realm of the possible. (C) 2015 Elsevier B.V. All rights reserved.