984 resultados para one-dimensional waveguide


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents numerical simulation of the evolution of one-dimensional normal shocks, their propagation, reflection and interaction in air using a single diaphragm Riemann shock tube and validate them using experimental results. Mathematical model is derived for one-dimensional compressible flow of viscous and conducting medium. Dimensionless form of the mathematical model is used to construct space-time finite element processes based on minimization of the space-time residual functional. The space-time local approximation functions for space-time p-version hierarchical finite elements are considered in higher order GRAPHICS] spaces that permit desired order of global differentiability of local approximations in space and time. The resulting algebraic systems from this approach yield unconditionally positive-definite coefficient matrices, hence ensure unique numerical solution. The evolution is computed for a space-time strip corresponding to a time increment Delta t and then time march to obtain the evolution up to any desired value of time. Numerical studies are designed using recently invented hand-driven shock tube (Reddy tube) parameters, high/low side density and pressure values, high- and low-pressure side shock tube lengths, so that numerically computed results can be compared with actual experimental measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two of the aims of laboratory one-dimensional consolidation tests are prediction of the end of primary settlement, and determination of the coefficient of consolidation of soils required for the time rate of consolidation analysis from time-compression data. Of the many methods documented in the literature to achieve these aims, Asaoka's method is a simple and useful tool, and yet the most neglected one since its inception in the geotechnical engineering literature more than three decades ago. This paper appraises Asaoka's method, originally proposed for the field prediction of ultimate settlement, from the perspective of laboratory consolidation analysis along with recent developments. It is shown through experimental illustrations that Asaoka's method is simpler than the conventional and popular methods, and makes a satisfactory prediction of both the end of primary compression and the coefficient of consolidation from laboratory one-dimensional consolidation test data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction between 4,4'-sulfonyldibenzoic acid (H(2)SDBA) and manganese under mild conditions resulted in the isolation of two new three-dimensional compounds, Mn-4(C14H8O6S)(4)(DMA)(2)]center dot 3DMA, I, and Mn-3(C14H8O6S)(3)(DMA)(2)(MeOH)]center dot DMA, IIa. Both structures have Mn-3 trimer oxo cluster units. While the Mn-3 oxoclusters are connected through octahedral manganese forming one-dimensional Mn-O-Mn chains in I, the Mn-3 units are isolated in IIa. The SDBA units connect the Mn-O-Mn chains and the Mn-3 clusters giving rise to the three-dimensional structure. Both compounds have coordinated and free solvent molecules. In IIa, two different solvent molecules are coordinated, of which one solvent can be reversibly exchanged by a variety of other similar solvents via a solvent-mediated single crystal to single crystal (SCSC) transformation. The free lattice DMA solvent molecules in I can be exchanged by water molecules resulting in hydrophilic channels. Proton conductivity studies on I reveals a high proton mobility with conductivity values of similar to 0.87 x 10(-3) Omega(-1) cm(-1) at 34 degrees C and 98% RH, which is comparable to some of the good proton conductivity values observed in inorganic coordination polymers. We have also shown structural transformation of I to IIa through a possible dissolution and recrystallization pathway. In addition, both I and IIa appear to transform to two other manganese compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5) and H3O](2)Mn-7(mu 3-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8) under suitable reaction conditions. We have partially substituted Co in place of Mn in the Mn-3 trimer clusters forming CoMn2(C14H8O6S)(3)(DMA)(2)(EtOH)]center dot DMA, III, a structure that is closely related to IIa. All the compounds reveal antiferromagnetic behavior. On heating, the cobalt substituted phase (compound III) forms a CoMn2O4 spinel phase with particle sizes in the nanometer range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One-dimensional (1D) zinc oxide (ZnO) hexagonal rods have been successfully synthesized by surfactant free hydrothermal process at different temperatures. It can be found that the reaction temperature play a crucial role in the formation of ZnO uniform hexagonal rods. The possible formation processes of 1-D ZnO hexagonal rods were investigated. The zinc hydroxide acts as the morphology-formative intermediate for the formation of ZnO nanorods. Upon excitation at 325 nm, the sample prepared at 180 degrees C show several emission bands at 400 nm (similar to 3.10 eV), 420 nm (similar to 2.95 eV), 482 nm (similar to 2.57 eV) and 524 nm (similar to 2.36 eV) corresponding to different kind of defects. TL studies were carried out by pre-irradiating samples with gamma-rays ranging from 1 to 7 kGy at room temperature. A well resolved glow peak at similar to 354 degrees C was recorded which can be ascribed to deep traps. Furthermore, the defects associated with surface states in ZnO nano-structures are characterized by electron paramagnetic resonance. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an electrochemical alloying reaction, the electroactive particles become mechanically unstable owing to large volume changes occurring as a result of high amounts of lithium intake. This is detrimental for long-term battery performance. Herein, a novel synthesis approach to minimize such mechanical instabilities in tin particles is presented. An optimal one-dimensional assembly of crystalline single-phase tin-antimony (SnSb) alloy nanoparticles inside porous carbon fibers (abbreviated SnSb-C) is synthesized for the first time by using the electrospinning technique (employing non-oxide precursors) in combination with a sintering protocol. The ability of antimony to alloy independently with lithium is beneficial as it buffers the unfavorable volume changes occurring during successive alloying/dealloying cycles in Sn. The SnSb-C assembly provides nontortuous (tortuosity coefficient, =1) fast conducting pathways for both electrons and ions. The presence of carbon in SnSb-C completely nullifies the conventional requirement of other carbon forms during cell electrode assembly. The SnSb-C exhibited remarkably high electrochemical lithium stability and high specific capacities over a wide range of currents (0.2-5Ag(-1)). In addition to lithium-ion batteries, it is envisaged that SnSb-C also has potential as a noncarbonaceous anode for other battery chemistries, such as sodium-ion batteries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phase-change cooling technique is a suitable method for thermal management of electronic equipment subjected to transient or cyclic heat loads. The thermal performance of a phase-change based heat sink under cyclic heat load depends on several design parameters, namely, applied heat flux, cooling heat transfer coefficient, thermophysical properties of phase-change materials (PCMs), and physical dimensions of phase-change storage system during melting and freezing processes. A one-dimensional conduction heat transfer model is formulated to evaluate the effectiveness of preliminary design of practical PCM-based energy storage units. In this model, the phase-change process of the PCM is divided into melting and solidification subprocesses, for which separate equations are written. The equations are solved sequentially and an explicit closed-form solution is obtained. The efficacy of analytical model is estimated by comparing with a finite-volume-based numerical solution for both transient and cyclic heat loads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A state-based micropolar peridynamic theory for linear elastic solids is proposed. The main motivation is to introduce additional micro-rotational degrees of freedom to each material point and thus naturally bring in the physically relevant material length scale parameters into peridynamics. Non-ordinary type modeling via constitutive correspondence is adopted here to define the micropolar peridynamic material. Along with a general three dimensional model, homogenized one dimensional Timoshenko type beam models for both the proposed micropolar and the standard non-polar peridynamic variants are derived. The efficacy of the proposed models in analyzing continua with length scale effects is established via numerical simulations of a few beam and plane-stress problems. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Contrary to the actual nonlinear Glauber model, the linear Glauber model (LGM) is exactly solvable, although the detailed balance condition is not generally satisfied. This motivates us to address the issue of writing the transition rate () in a best possible linear form such that the mean squared error in satisfying the detailed balance condition is least. The advantage of this work is that, by studying the LGM analytically, we will be able to anticipate how the kinetic properties of an arbitrary Ising system depend on the temperature and the coupling constants. The analytical expressions for the optimal values of the parameters involved in the linear are obtained using a simple Moore-Penrose pseudoinverse matrix. This approach is quite general, in principle applicable to any system and can reproduce the exact results for one dimensional Ising system. In the continuum limit, we get a linear time-dependent Ginzburg-Landau equation from the Glauber's microscopic model of non-conservative dynamics. We analyze the critical and dynamic properties of the model, and show that most of the important results obtained in different studies can be reproduced by our new mathematical approach. We will also show in this paper that the effect of magnetic field can easily be studied within our approach; in particular, we show that the inverse of relaxation time changes quadratically with (weak) magnetic field and that the fluctuation-dissipation theorem is valid for our model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study Majorana modes and transport in one-dimensional systems with a p-wave superconductor (SC) and normal metal leads. For a system with an SC lying between two leads, it is known that there is a Majorana mode at the junction between the SC and each lead. If the p-wave pairing Delta changes sign or if a strong impurity is present at some point inside the SC, two additional Majorana modes appear near that point. We study the effect of all these modes on the sub-gap conductance between the leads and the SC. We derive an analytical expression as a function of Delta and the length L of the SC for the energy shifts of the Majorana modes at the junctions due to hybridization between them; the shifts oscillate and decay exponentially as L is increased. The energy shifts exactly match the location of the peaks in the conductance. Using bosonization and the renormalization group method, we study the effect of interactions between the electrons on Delta and the strengths of an impurity inside the SC or the barriers between the SC and the leads; this in turn affects the Majorana modes and the conductance. Finally, we propose a novel experimental realization of these systems, in particular of a system where Delta changes sign at one point inside the SC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One-dimensional transient heat flow is interpreted as a procession of `macro-scale translatory motion of indexed isothermal surfaces'. A new analytical model is proposed by introducing velocity of isothermal surface in Fourier heat diffusion equation. The velocity dependent function is extracted by revisiting `the concept of thermal layer of heat conduction in solid' and `exact solution' to estimate thermal diffusivity. The experimental approach involves establishment of 1 D unsteady heat flow inside the sample through Step-temperature excitation. A novel self-reference interferometer is utilized to separate a `unique isothermal surface' in time-varying temperature field. The translatory motion of the said isothermal surface is recorded using digital camera to estimate its velocity. From the knowledge of thermo-optic coefficient, temperature of the said isothermal surface is predicted. The performance of proposed method is evaluated for Quartz sample and compared with literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational models based on the phase-field method typically operate on a mesoscopic length scale and resolve structural changes of the material and furthermore provide valuable information about microstructure and mechanical property relations. An accurate calculation of the stresses and mechanical energy at the transition region is therefore indispensable. We derive a quantitative phase-field elasticity model based on force balance and Hadamard jump conditions at the interface. Comparing the simulated stress profiles calculated with Voigt/Taylor (Annalen der Physik 274(12):573, 1889), Reuss/Sachs (Z Angew Math Mech 9:49, 1929) and the proposed model with the theoretically predicted stress fields in a plate with a round inclusion under hydrostatic tension, we show the quantitative characteristics of the model. In order to validate the elastic contribution to the driving force for phase transition, we demonstrate the absence of excess energy, calculated by Durga et al. (Model Simul Mater Sci Eng 21(5):055018, 2013), in a one-dimensional equilibrium condition of serial and parallel material chains. To validate the driving force for systems with curved transition regions, we relate simulations to the Gibbs-Thompson equilibrium condition

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first principles calculations, we show that the overlapping defects in bi-layer graphene (both AA-and AB-stacked) interact forming inter-layer covalent bonds, giving rise to two-dimensional (2D) clipped structures, without explicit use of functional groups. These clipped structures can be transformed into one-dimensional (1D) double wall nanotubes (DWCNT) or multi-layered three dimensional (3D) bulk structures. These clipped structures show good mechanical strength due to covalent bonding between multi-layers. Clipping also provides a unique way to simultaneously harness the conductivity of both walls of a double wall nanotube through covalently bonded scattering junctions. With additional conducting channels and improved mechanical stability, these clipped structures can lead to a myriad of applications in novel devices. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of multiplicative noise on a signal when compared with that of additive noise is very large. In this paper, we address the problem of suppressing multiplicative noise in one-dimensional signals. To deal with signals that are corrupted with multiplicative noise, we propose a denoising algorithm based on minimization of an unbiased estimator (MURE) of meansquare error (MSE). We derive an expression for an unbiased estimate of the MSE. The proposed denoising is carried out in wavelet domain (soft thresholding) by considering time-domain MURE. The parameters of thresholding function are obtained by minimizing the unbiased estimator MURE. We show that the parameters for optimal MURE are very close to the optimal parameters considering the oracle MSE. Experiments show that the SNR improvement for the proposed denoising algorithm is competitive with a state-of-the-art method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present results for a finite variant of the one-dimensional Toom model with closed boundaries. We show that the steady state distribution is not of product form, but is nonetheless simple. In particular, we give explicit formulas for the densities and some nearest neighbour correlation functions. We also give exact results for eigenvalues and multiplicities of the transition matrix using the theory of R-trivial monoids in joint work with A. Schilling, B. Steinberg and N. M. Thiery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kinetic theory of fluid turbulence modeling developed by Degond and Lemou in 7] is considered for further study, analysis and simulation. Starting with the Boltzmann like equation representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence. In order to describe some important turbulence phenomenology, the relaxation time incorporates a dependency on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods. To investigate this problem, we focus here on a multi-dimensional prototype model and first propose an appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.