974 resultados para ocean acidification


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 µatm) and low, current (390 µatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, andSyracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporusand of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE I.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of Emiliania huxleyi (Lohmann), Calcidiscus leptoporus (Murray and Blackman), and Syracosphaera pulchra (Lohmann) to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. For the first time, we reported on the response of the non-calcifying (haploid) life stage of these three species. Growth rate, cell size, particulate inorganic (PIC) and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 ppm) and their organic and inorganic carbon production calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2 but the response of other processes varied among species. Calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2 while it increased in E. huxleyi. Particulate organic carbon production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophores species, the haploid stage being more sensitive. This must be taken into account when predicting the fate of coccolithophores in the future ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study demonstrated that the increased partial pressure of CO2 (pCO2) in seawater and the attendant acidification that are projected to occur by the year 2300 will severely impact the early development of the oyster Crassostrea gigas. Eggs of the oyster were artificially fertilized and incubated for 48 h in seawater acidified to pH 7.4 by equilibrating it with CO2-enriched air (CO2 group), and the larval morphology and degree of shell mineralization were compared with the control treatment (air-equilibrated seawater). Only 5% of the CO2 group developed into normal 'D-shaped' veliger larvae as compared with 68% in the control group, although no difference was observed between the groups up to the trochophore stage. Thus, during embryogenesis, the calcification process appears to be particularly affected by low pH and/or the low CaCO3 saturation state of high-CO2 seawater. Veliger larvae with fully mineralized shells accounted for 30% of the CO2-group larvae, compared with 72% in the control (p < 0.005). Shell mineralization was completely inhibited in 45% of the CO2-group larvae, but only in 16% of the control (p < 0.05). Normal D-shaped veligers of the control group exhibited increased shell length and height between 24 and 48 h after fertilization, while the few D-shaped veligers of the CO2 group showed no shell growth during the same period. Our results suggest that future ocean acidification will have deleterious impacts on the early development of marine benthic calcifying organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hatching process of the Pacific abalone Haliotis discus hannai was prolonged at a pH of 7.6 and pH 7.3, and the embryonic developmental success was reduced. The hatching rate at pH 7.3 was significantly (10.8%) lower than that of the control (pH 8.2). The malformation rates at pH 7.9 and pH 8.2 were less than 20% but were 53.8% and 77.3% at pH 7.6 and pH 7.3, respectively. When newly hatched larvae were incubated for 48 h at pH 7.3, only 2.7% of the larvae settled, while more than 70% of the larvae completed settlement in the other three pH treatments. However, most 24 h old larvae could complete metamorphosis in all four pH treatments. Overall, a 0.3-unit reduction in water pH will produce no negative effect on the early development of the Pacific abalone, but further reduction in pH to the values predicted for seawater by the end of this century will have strong detrimental effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification may negatively impact the early life stages of some marine invertebrates including corals. Although reduced growth of juvenile corals in acidified seawater has been reported, coral larvae have been reported to demonstrate some level of tolerance to reduced pH. We hypothesize that the observed tolerance of coral larvae to low pH may be partly explained by reduced metabolic rates in acidified seawater because both calcifying and non-calcifying marine invertebrates could show metabolic depression under reduced pH in order to enhance their survival. In this study, after 3-d and 7-d exposure to three different pH levels (8.0, 7.6, and 7.3), we found that the oxygen consumption of Acropora digitifera larvae tended to be suppressed with reduced pH, although a statistically significant difference was not observed between pH conditions. Larval metamorphosis was also observed, confirming that successful recruitment is impaired when metamorphosis is disrupted, despite larval survival. Results also showed that the metamorphosis rate significantly decreased under acidified seawater conditions after both short (2 h) and long (7 d) term exposure. These results imply that acidified seawater impacts larval physiology, suggesting that suppressed metabolism and metamorphosis may alter the dispersal potential of larvae and subsequently reduce the resilience of coral communities in the near future as the ocean pH decreases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Survival of coral planulae, and the successful settlement and healthy growth of primary polyps are critical for the dispersal of scleractinian corals and hence the recovery of degraded coral reefs. It is therefore important to explore how the warmer and more acidic oceanic conditions predicted for the future could affect these processes. This study used controlled culture to investigate the effects of a 1 °C increase in temperature and a 0.2-0.25 unit decrease in pH on the settlement and survival of planulae and the growth of primary polyps in the Tropical Eastern Pacific coral Porites panamensis. We found that primary polyp growth was reduced only marginally by more acidic seawater but the combined effect of high temperature and lowered pH caused a significant reduction in growth of primary polyps by almost a third. Elevated temperature was found to significantly reduce the amount of zooxanthellae in primary polyps, and when combined with lowered pH resulted in a significant reduction in biomass of primary polyps. However, survival and settlement of planula larvae were unaffected by increased temperature, lowered acidity or the combination of both. These results indicate that in future scenarios of increased temperature and oceanic acidity coral planulae will be able to disperse and settle successfully but primary polyp growth may be hampered. The recovery of reefs may therefore be impeded by global change even if local stressors are curbed and sufficient sources of planulae are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification results from an increase in the concentrations of atmospheric carbon dioxide (CO2) impacts on marine calcifying species, which is predicted to become more pronounced in the future. By the end of this century, atmospheric pCO2 levels will have doubled relative to the pre-industrial levels of 280 ppm. However, the effects of pre-industrial pCO2 levels on marine organisms remain largely unknown. In this study, we investigated the effects of pre-industrial pCO2 conditions on the size of the pluteus larvae of sea urchins, which are known to be vulnerable to ocean acidification. The larval size of Hemicentrotus pulcherrimus significantly increased when reared at pre-industrial pCO2 level relative to the present one, and the size of Anthocidaris crassispina larvae decreased as the pCO2 levels increased from the pre-industrial level to the near future ones after 3 days' exposure. In this study, it is suggested that echinoid larvae responded to pre-industrial pCO2 levels. Ocean acidification may be affecting some sensitive marine calcifiers even at the present pCO2 level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions have exacerbated two environmental stressors, global climate warming and ocean acidification (OA), that have serious implications for marine ecosystems. Coral reefs are vulnerable to climate change yet few studies have explored the potential for interactive effects of warming temperature and OA on an important coral reef calcifier, crustose coralline algae (CCA). Coralline algae serve many important ecosystem functions on coral reefs and are one of the most sensitive organisms to ocean acidification. We investigated the effects of elevated pCO2 and temperature on calcification of Hydrolithon onkodes, an important species of reef-building coralline algae, and the subsequent effects on susceptibility to grazing by sea urchins. H. onkodes was exposed to a fully factorial combination of pCO2 (420, 530, 830 µatm) and temperature (26, 29 °C) treatments, and calcification was measured by the change in buoyant weight after 21 days of treatment exposure. Temperature and pCO2 had a significant interactive effect on net calcification of H. onkodes that was driven by the increased calcification response to moderately elevated pCO2. We demonstrate that the CCA calcification response was variable and non-linear, and that there was a trend for highest calcification at ambient temperature. H. onkodes then was exposed to grazing by the sea urchin Echinothrix diadema, and grazing was quantified by the change in CCA buoyant weight from grazing trials. E. diadema removed 60% more CaCO3 from H. onkodes grown at high temperature and high pCO2 than at ambient temperature and low pCO2. The increased susceptibility to grazing in the high pCO2 treatment is among the first evidence indicating the potential for cascading effects of OA and temperature on coral reef organisms and their ecological interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variability in metabolic scaling in animals, the relationship between metabolic rate ( R) and body mass ( M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32-) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Omega ar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification studies in the past decade have greatly improved our knowledge of how calcifying organisms respond to increased surface ocean CO2 levels. It has become evident that, for many organisms, nutrient availability is an important factor that influences their physiological responses and competitive interactions with other species. Therefore, we tested how simulated ocean acidification and eutrophication (nitrate and phosphate enrichment) interact to affect the physiology and ecology of a calcifying chlorophyte macroalga (Halimeda opuntia (L.) J.V. Lamouroux) and its common noncalcifying epiphyte (Dictyota sp.) in a 4-week fully crossed multifactorial experiment. Inorganic nutrient enrichment (+NP) had a strong influence on all responses measured with the exception of net calcification. Elevated CO2 alone significantly decreased electron transport rates of the photosynthetic apparatus and resulted in phosphorus limitation in both species, but had no effect on oxygen production or respiration. The combination of CO2 and +NP significantly increased electron transport rates in both species. While +NP alone stimulated H. opuntia growth rates, Dictyota growth was significantly stimulated by nutrient enrichment only at elevated CO2, which led to the highest biomass ratios of Dictyota to Halimeda. Our results suggest that inorganic nutrient enrichment alone stimulates several aspects of H. opuntia physiology, but nutrient enrichment at a CO2 concentration predicted for the end of the century benefits Dictyota sp. and hinders its calcifying basibiont H. opuntia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hierarchical clustering. Taxonomic assignment of reads was performed using a preexisting database of SSU rDNA sequences from including XXX reference sequences generated by Sanger sequencing. Experimental amplicons (reads), sorted by abundance, were then concatenated with the reference extracted sequences sorted by decreasing length. All sequences, experimental and referential, were then clustered to 85% identity using the global alignment clustering option of the uclust module from the usearch v4.0 software (Edgar, 2010). Each 85% cluster was then reclustered at a higher stringency level (86%) and so on (87%, 88%,.) in a hierarchical manner up to 100% similarity. Each experimental sequence was then identified by the list of clusters to which it belonged at 85% to 100% levels. This information can be viewed as a matrix with the lines corresponding to different sequences and the columns corresponding to the cluster membership at each clustering level. Taxonomic assignment for a given read was performed by first looking if reference sequences clustered with the experimental sequence at the 100% clustering level. If this was the case, the last common taxonomic name of the reference sequence(s) within the cluster was used to assign the environmental read. If not, the same procedure was applied to clusters from 99% to 85% similarity if necessary, until a cluster was found containing both the experimental read and reference sequence(s), in which case sequences were taxonomically assigned as described above.