950 resultados para nonpoint-source pollution control
Resumo:
243 p. : il.
Resumo:
The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology.
Resumo:
The production and productivity of a water body is largely dependent on its quality. One major source of water pollution is from the agrochemicals from nearby farmlands. The quality of water in the Obafemi Awolowo University Teaching and Research Farm Reservoir (Ile-Ife, Nigeria) was monitored between October, 1993 and March, 1994. Structured questionnaires were administered to obtain information on the types of agrochemicals in use on the farm. Water samples were collected fortnightly for analyses of the physico-chemical parameters and ionic content of the water. Investigation revealed that 21 agrochemicals had been in use on the farm. The physico-chemical parameters of the water showed that the water was very poor in nutrient. The high concentration of ammonium ion contents of the water shows an indication that the residues of certain agrochemicals got into the water to pollute it. Agrochemicals should be used with great caution on farmlands especially in areas close to water bodies from which man obtains fish and other proteinous foods. This paper also suggests a regular monitoring of water quality of reservoirs in order to pick the earliest signs of pollution
Resumo:
This study, though, has as its core objective cost reduction in aquaculture nutrition was equally designed to investigate the value of the peels of cassava (Manihot utillisima) as energy source in the diet of Oreochromis niloticus fry. Three levels of cassava peels diet and a control (100% yellow maize in the carbohydrate mixture) was prepared and tested on O. niloticus fry for ten (10) weeks. The fry with mean weight of 0.32g were grouped fifteen (15) in each of the glass aquaria measuring 60x30x30cm with a maximum capacity of 52 litres of water. The fry were fed twice daily at 10% biomass. Weekly, the fry were weighed to determine the weight increment or otherwise and the quality of feed adjusted accordingly. Water quality parameters like temperature, pH and dissolved oxygen (D.0) were monitored and found to be at desirable level. DT 3 (97 % cassava peels and 3% yellow maize) in the carbohydrate mixture gave the best growth performance. The fry fed, this diet gained mean weight of 1.18g for the period of the experiment. However, the poorest performance in terms of growth was from fry fed the control diet (100%yellow maize in the carbohydrate mixture) fry fed this diet gained mean weight of 0.80 for the duration of the experiment. Analysis of the various growth indices like SGR, PER, FCR and NPU shows that DT3 was the overall best diet with an SGR value of2.40 and FCR of 43.83. However, DT 1 (70% cassava peels and 30% yellow maize) gave the poorest SGR of 1.61 and FCR of 67.58. The difference in weight gain among the fry fed the three levels of cassava peels diet and the control was not statically significant (P>0.05)
Resumo:
The study was designed to investigate the value of the peels of yam (Dioscorea rotundata) as energy source in the diet of Oreochromis niloticus fry and to investigate the level of inclusion of this peels that will give optimum growth performance. Four diets, three levels of yam peels and a control, was prepared and tested on O. niloticus fry (mean weight of 0.27g) for ten weeks. Fifteen (15) O. niloticus fry were grouped in each of the glass aquaria, measuring 60x30x3Ocm and with a maximum capacity of 52 liters of water. The fry were fed twice daily at 10% biomass. The fry were weighed weekly to determine weight increment or otherwise and the quality of feed was adjusted accordingly. DTl (70% yam peels and 30% yellow maize) in the carbohydrate mixture gave the best performance. The fry fed this diet, gained a mean weight of 1.20g for the period of the experiment. The poorest performance in terms of growth was from fry fed the control diet (100% yellow maize in the carbohydrate mixture). Fry fed this diet gained mean weight of 0.80g for the duration of the experiment. Analysis of the various growth indices like SGR, PER, FCR and NPU shows that DTl was the overall best diet with an SGR value of I. 92 and FCR of 54.10. The difference in weight gain by fry fed the three levels of yam peels diet and the control diet (100% yellow maize) was not statistically significant (P>0.05)
Resumo:
Shellfish bed closures along the North Carolina coast have increased over the years seemingly concurrent with increases in population (Mallin 2000). More and faster flowing storm water has come to mean more bacteria, and fecal indicator bacterial (FIB) standards for shellfish harvesting are often exceeded when no source of contamination is readily apparent (Kator and Rhodes, 1994). Could management reduce bacterial loads if the source of the bacteria where known? Several potentially useful methods for differentiating human versus animal pollution sources have emerged including Ribotyping and Multiple Antibiotic Resistance (MAR) (US EPA, 2005). Total Maximum Daily Load (TMDL) studies on bacterial sources have been conducted for streams in NC mountain and Piedmont areas (U.S. EPA, 1991 and 2005) and are likely to be mandated for coastal waters. TMDL analysis estimates allowable pollutant loads and allocates them to known sources so management actions may be taken to restore water to its intended uses (U.S. EPA, 1991 and 2005). This project sought first to quantify and compare fecal contamination levels for three different types of land use on the coast, and second, to apply MAR and ribotyping techniques and assess their effectiveness for indentifying bacterial sources. Third, results from these studies would be applied to one watershed to develop a case study coastal TMDL. All three watershed study areas are within Carteret County, North Carolina. Jumping Run Creek and Pettiford Creek are within the White Oak River Basin management unit whereas the South River falls within the Neuse River Basin. Jumping Run Creek watershed encompasses approximately 320 ha. Its watershed was a dense, coastal pocosin on sandy, relic dune ridges, but current land uses are primarily medium density residential. Pettiford Creek is in the Croatan National Forest, is 1133 ha. and is basically undeveloped. The third study area is on Open Grounds Farm in the South River watershed. Half of the 630 ha. watershed is under cultivation with most under active water control (flashboard risers). The remaining portion is forested silviculture.(PDF contains 4 pages)
Resumo:
This work concerns itself with the possibility of solutions, both cooperative and market based, to pollution abatement problems. In particular, we are interested in pollutant emissions in Southern California and possible solutions to the abatement problems enumerated in the 1990 Clean Air Act. A tradable pollution permit program has been implemented to reduce emissions, creating property rights associated with various pollutants.
Before we discuss the performance of market-based solutions to LA's pollution woes, we consider the existence of cooperative solutions. In Chapter 2, we examine pollutant emissions as a trans boundary public bad. We show that for a class of environments in which pollution moves in a bi-directional, acyclic manner, there exists a sustainable coalition structure and associated levels of emissions. We do so via a new core concept, one more appropriate to modeling cooperative emissions agreements (and potential defection from them) than the standard definitions.
However, this leaves the question of implementing pollution abatement programs unanswered. While the existence of a cost-effective permit market equilibrium has long been understood, the implementation of such programs has been difficult. The design of Los Angeles' REgional CLean Air Incentives Market (RECLAIM) alleviated some of the implementation problems, and in part exacerbated them. For example, it created two overlapping cycles of permits and two zones of permits for different geographic regions. While these design features create a market that allows some measure of regulatory control, they establish a very difficult trading environment with the potential for inefficiency arising from the transactions costs enumerated above and the illiquidity induced by the myriad assets and relatively few participants in this market.
It was with these concerns in mind that the ACE market (Automated Credit Exchange) was designed. The ACE market utilizes an iterated combined-value call market (CV Market). Before discussing the performance of the RECLAIM program in general and the ACE mechanism in particular, we test experimentally whether a portfolio trading mechanism can overcome market illiquidity. Chapter 3 experimentally demonstrates the ability of a portfolio trading mechanism to overcome portfolio rebalancing problems, thereby inducing sufficient liquidity for markets to fully equilibrate.
With experimental evidence in hand, we consider the CV Market's performance in the real world. We find that as the allocation of permits reduces to the level of historical emissions, prices are increasing. As of April of this year, prices are roughly equal to the cost of the Best Available Control Technology (BACT). This took longer than expected, due both to tendencies to mis-report emissions under the old regime, and abatement technology advances encouraged by the program. Vve also find that the ACE market provides liquidity where needed to encourage long-term planning on behalf of polluting facilities.
Resumo:
On the materials scale, thermoelectric efficiency is defined by the dimensionless figure of merit zT. This value is made up of three material components in the form zT = Tα2/ρκ, where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the total thermal conductivity. Therefore, in order to improve zT would require the reduction of κ and ρ while increasing α. However due to the inter-relation of the electrical and thermal properties of materials, typical routes to thermoelectric enhancement come in one of two forms. The first is to isolate the electronic properties and increase α without negatively affecting ρ. Techniques like electron filtering, quantum confinement, and density of states distortions have been proposed to enhance the Seebeck coefficient in thermoelectric materials. However, it has been difficult to prove the efficacy of these techniques. More recently efforts to manipulate the band degeneracy in semiconductors has been explored as a means to enhance α.
The other route to thermoelectric enhancement is through minimizing the thermal conductivity, κ. More specifically, thermal conductivity can be broken into two parts, an electronic and lattice term, κe and κl respectively. From a functional materials standpoint, the reduction in lattice thermal conductivity should have a minimal effect on the electronic properties. Most routes incorporate techniques that focus on the reduction of the lattice thermal conductivity. The components that make up κl (κl = 1/3Cνl) are the heat capacity (C), phonon group velocity (ν), and phonon mean free path (l). Since the difficulty is extreme in altering the heat capacity and group velocity, the phonon mean free path is most often the source of reduction.
Past routes to decreasing the phonon mean free path has been by alloying and grain size reduction. However, in these techniques the electron mobility is often negatively affected because in alloying any perturbation to the periodic potential can cause additional adverse carrier scattering. Grain size reduction has been another successful route to enhancing zT because of the significant difference in electron and phonon mean free paths. However, grain size reduction is erratic in anisotropic materials due to the orientation dependent transport properties. However, microstructure formation in both equilibrium and nonequilibrium processing routines can be used to effectively reduce the phonon mean free path as a route to enhance the figure of merit.
This work starts with a discussion of several different deliberate microstructure varieties. Control of the morphology and finally structure size and spacing is discussed at length. Since the material example used throughout this thesis is anisotropic a short primer on zone melting is presented as an effective route to growing homogeneous and oriented polycrystalline material. The resulting microstructure formation and control is presented specifically in the case of In2Te3-Bi2Te3 composites and the transport properties pertinent to thermoelectric materials is presented. Finally, the transport and discussion of iodine doped Bi2Te3 is presented as a re-evaluation of the literature data and what is known today.
Resumo:
In this paper, the background to the development of an analytical quality control procedure for the Trophic Diatom Index (TDI) is explained, highlighting some of the statistical and taxonomic problems encountered, and going on to demonstrate how the system works in practice. Most diatom-based pollution indices, including the TDI, use changes in the relative proportions of different taxa to indicate changing environmental conditions. The techniques involved are therefore much simpler than those involved in many studies of phytoplankton, for example, where absolute numbers are required.
Resumo:
The research was carried out to assess the trace metal concentration in sediments of ship breaking area in Bangladesh. The study areas were separated into Ship breaking Zone and Reference Site for comparative analysis. Metals like Iron ( Fe) was found at 11932 to 41361.71µg.g-1 in the affected site and 3393.37 µg.g-1 in the control site. Manganese (Mn) varied from 2.32 to 8.25 µg.g-1 in the affected site where as it was recorded as 1.8 µg.g-1 in the control area. Chromium(Cr), Nickel (Ni), Zinc(Zn) and Lead (Pb) were also varied from 22.89 to 86.72 µg.g-1; 23.12 to 48.6;83.78 to 142.85 and 36.78 to 147.83 µg.g-1 respectively in the affected site whereas these were recorded as 19; 3.98; 22.22 and 8.82 µg.g-1 in the control site. Copper (Cu); Cadmium (Cd) and Mercury (Hg) concentration were varied from 21.05 to 39.85; 0.57 to 0.94 and 0.05 to 0.11 µg.g-1 in the affected site and 33.0; 0.115 and 0.01 µg.g-1 in the control site. It may conclude that heavy metal pollution in sediments at ship breaking area of Bangladesh is at alarming stage.
Resumo:
A 2-D SW-banyan network is introduced by properly folding the 1-D SW-banyan network, and its corresponding optical setup is proposed by means of polarizing beamsplitters and 2-D phase spatial light modulators. Then, based on the characteristics and the proposed optical setup, the control for the routing path between any source-destination pair is given, and the method to determine whether a given permutation is permissible or not is discussed. Because the proposed optical setup consists of only optical polarization elements, it is compact in structure, its corresponding energy loss and crosstalk are low, and its corresponding available number of channels is high. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The processes which control the growth, composition, succession and loss from suspension of phytoplankton algae are briefly reviewed, with special reference to function in eutrophic reservoir systems. The ecology of larger algal biomasses supported by high nutrient loading rates are more likely to be subject to physical (wash-out, underwater light penetration, thermal stability and mixing) than to chemical constraints. Sudden changes in the interactions between physical factors temporarily impair the growth of dominant algal species, and advance the succession. Certain algae may be cropped heavily, but selectively, by zooplankton feeding, but they are rarely the species which cause problems in waterworks practice. Grazing, however, does influence succession. A deeper understanding of the operation of loss control mechanism is urgently required. Potentially, manipulation of the physical environment provides an important means of alleviating day-to-day algal problems in eutrophic reservoirs; in terms of cost effectiveness these may prove to be more attractive than reducing nutrient loads at source.
Resumo:
Technological progress, having reached in our time an unprecedented speed, is still increasing the rate of mineral extraction, industrial construction, and the mastering of new kinds of energy is growing. Correspondingly the anthropogenic load on the biosphere is increased and that requires the comprehensive development of monitoring the anthropogenic changes in the natural environment. Among problems resulting from the scientific-technological development, a noticeable place is given to the problem of pure water. Surface land waters proved to be a sensitive link in the natural environment. The hydrobiological service for observations and control of the surface waters is one of the subsystems of the State/Federal Service for Observations and Control of pollution levels in environmental objects, conducted by the USSR State Committee for Hydrometeor- ology and Control of the Natural Environment. This paper summarises the the main principles of the organisation and goals of the national system of monitoring of the state of the natural environment in the USSR.
Resumo:
The severe problems caused by large phytoplankton populations in the River Meuse date back to the beginning of the 1980s. However, no clear relationship can be established between an increase of algal growth and dissolved nutrient concentrations, at least in the Belgian part of the river. Most probably, plankton algae start developing in France, utilizing large inputs of phosphorus from some of the tributaries: this point will be investigated further, as well as the effect of a reduction in the releases of phosphorus. A mathematical model helps to understand the main factors which control algal growth: underwater light, temperature, discharge and grazing by zooplankton. The last is a major loss process in summer and, as shown by recent observations, may trigger a seasonal succession leading to dominance by large phytoplankton taxa. With regard to water quality, eutrophication is a major problem in drinking-water treatment (filter clogging, etc.) and large numbers of decomposing algae may adversely affect the oxygen budget of the river. On the other hand, algal photosynthesis is the most important oxygen source at periods of low discharge, and reduced algal production may result in dramatic oxygen decreases in heavily polluted stretches of the river.
Resumo:
The three Biesbosch Reservoirs are pumped storage reservoirs, fed with rather polluted and highly eutrophic water from the River Meuse. Air injection at the bottom of the reservoirs prevents thermal stratification, which would otherwise result in serious water quality deterioration. Reservoir mixing also serves as an economic algal control measure; mixing over sufficient depth causes light to play the role of limiting factor and this, combined with zooplankton grazing, keeps the biomass of phytoplankton at acceptable levels. Special problems are caused by benthic, geosmin-producing Oscillatoria species growing on the inner embankment. Rooting up the bottom with a harrow is used as the method of control, based on underwater observations by biological staff trained as SCUBA-divers. With regard to pollutant behaviour the three reservoirs act as a series of fully mixed reactors. This enables the application of kinetic models to describe their behaviour and allows the use of a selective intake policy, e.g. for suspended solids with associated contaminants, ammonia and polynuclear aromatic hydrocarbons. A combination of selective intake and self- purification processes - enhanced by the compartmentalisation of the storage volume in three reservoirs - leads to a striking improvement for many water-quality parameters.